1. bookVolume 12 (2019): Issue 1 (April 2019)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Reactivity of calcium carbonate prepared from flue gas desulfurization gypsum

Published Online: 09 Jul 2019
Volume & Issue: Volume 12 (2019) - Issue 1 (April 2019)
Page range: 14 - 21
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Reactivity of various calcium carbonate samples for flue gas desulfurization was tested. Two groups of CaCO3 samples were considered; natural limestone containing calcite phase dominantly and samples prepared by the conversion of gypsum with ammonium and carbon dioxide (precipitated CaCO3) containing different amounts of calcite, aragonite and vaterite.

Reactivity of precipitated calcium carbonate depends primarily on the particle size, similarly as in case of industrial samples. The initial reaction rate was comparable with the industrial limestones for samples with the average particle size lower than 15 μm. However, the conversion of laboratory samples was significantly higher after 5 min of the reaction.

Phase composition of the precipitated calcium carbonate has a minor but noticeable impact on the reactivity. The presence of vaterite slightly increased the reactivity, which is in accordance with its lower compact structure in comparison with calcite and aragonite. Unexpected effect of the increased content of aragonite, which is the most compact phase in comparison with calcite and vaterite, was observed. If calcium carbonate contains up to approximately 30 % of aragonite the reactivity increases, which can be explained by the SEM pictures showing agglomerate composition with relatively high specific surface. At higher contents of aragonite, the reactivity decreases. All the obtained results proved the suitability of precipitated CaCO3 prepared from flue gas desulfurization gypsum to be recycled in the flue gas desulfurization process.

Keywords

Ahlbeck J, Engman T, Fältén S, Vihma M (1993) Chemical Engineering Science 48: 3479—3484.10.1016/0009-2509(93)85003-8Search in Google Scholar

Ahlbeck J, Engman T, Fältén S, Vihma M (1995) Chemical Engineering Science 50: 1081—1089.10.1016/0009-2509(94)00482-7Search in Google Scholar

Benjamin MM (2002) Water Chemistry, McGraw-Hill. ISBN-10: 1577666674.Search in Google Scholar

BP Energy outlook 2018 Edition. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdfSearch in Google Scholar

Brown SR, De Vault RF, Williams PJ, Babcock & Wilcox Power Generation Group Inc. http://www.powermag.com/techniques-for-determining-limestone-composition-and-reactivity/?sPrintmode=1 (2009, accessed 5. 5. 2018)Search in Google Scholar

Chan PK, Rochelle GT (1982) American Chemical Society Symposium Series 188: 75—97.10.1021/bk-1982-0188.ch004Search in Google Scholar

Claudio A, Carletti G (2015) New Aspects in Limestone Dissolution for Wet Flue Gas Desulfurization, PhD Thesis, Åbo, Finland.Search in Google Scholar

CN101337684A, Method for recovering sulfur and co-producing calcium carbonate from desulfurization gypsum.Search in Google Scholar

Danielik V, Fellner P, Jurišová J, Králik M (2018) Chemical Papers 72: 2631—2639.10.1007/s11696-018-0493-8Search in Google Scholar

De Blasio C, Mäkilä E, Westerlund T (2012) Applied Energy 90: 175—181.10.1016/j.apenergy.2010.11.011Search in Google Scholar

Dou B, Pan W, Jin Q, Wang W, Li Y (2009) Energy Conversion and Management, 50(10): 2547—2553.10.1016/j.enconman.2009.06.012Search in Google Scholar

Dragan S and Ozunu A (2012) Cent. Eur. J. Chem. 10(5): 1556—1564.Search in Google Scholar

EU Reference Scenario 2016, Energy, transport and GHG emissions, Trends to 2050 (https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf).Search in Google Scholar

Exxon Mobil, 2018 Outlook for Energy: A View to 2040 (http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2018/2018-outlook-for-energy.pdf).Search in Google Scholar

Fellner P, Khandl V (1999) Characterization of Limestone Reactivity for Absorption of SO2 from Fume Gases. CHEMICAL PAPERS-SLOVAK ACADEMY OF SCIENCES, 53: 238—241.Search in Google Scholar

IEA. Energy and Air pollution World Energy Outlook 2016. Special report (2016) © OECD/IEA, 2016, International Energy Agency, 9 rue de la Fédération, 75739 Paris Cedex 15, France. (https://www.iea.org/publication/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf)Search in Google Scholar

Jang HG, Lee GJ, Mo SY (2001) KR100303388.Search in Google Scholar

Jang YN, Ryu KW, Lee MK (2014) US2014161692 (A1) — 2014-06-12.Search in Google Scholar

Králik M, Balko J, Foltinovič T, Štefancová R, Kučera M, Fellner P, Danielik V, Jurišová J (2017) 44th International Conference of SSCHE, May 22—26, 2017, Demänovská dolina, Slovakia: 662.Search in Google Scholar

Pepe F (2001) Industrial Engineering Chemistry Research 40: 5378—5385.10.1021/ie001119jSearch in Google Scholar

Plummer LN, Busenberg E (1982) Geochimica et Cosmochimica Acta 46(6):1011—1040.10.1016/0016-7037(82)90056-4Search in Google Scholar

Olausson S, Wallin M, Bjerle I (1993) The Chemical Engineering Journal 51(2): 99—108.10.1016/0300-9467(93)80016-HSearch in Google Scholar

Shih SM, Lin JP, Shiau GY (2000) Journal of Hazardous Materials B 79: 159—171.10.1016/S0304-3894(00)00253-3Search in Google Scholar

Siagi ZO, Mbarawa M (2009) Journal of Hazardous Materials 163: 678—682.10.1016/j.jhazmat.2008.07.014Search in Google Scholar

Stumpf Th, Roeder A, Hennicke HW (1984a) Das Reaktionsverfahren von Carbonatgesteinsmehlen in sauren, insbesondere schwefligsauren Lösungen. Teil I. (in German). Zement-Kalk-Gips 37: 262.Search in Google Scholar

Stumpf Th, Roeder A, Hennicke HW (1984b) Das Reaktionsverfahren von Carbonatgesteinsmehlen in sauren, insbesondere schwefligsauren Lösungen. Teil II. (in German). Zement-Kalk-Gips 37: 454.Search in Google Scholar

Toprac A, Rochelle GT (1982) Environmental Progress 1: 52—58.10.1002/ep.670010113Search in Google Scholar

Ukawa N, Takashina T, Shinoda N, Shimizu T (1993) Environmental Progress 12: 238—242.10.1002/ep.670120314Search in Google Scholar

Wallin M, Bjerle I (1989) Chemical Engineering Science 44: 61—67.10.1016/0009-2509(89)85233-9Search in Google Scholar

Wirsching F (2000) Calcium Sulfate. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/14356007.a04_55510.1002/14356007.a04_555Search in Google Scholar

Ye Z and Bjerle I (1994) Powder Technology 79: 273—277.10.1016/0032-5910(94)02825-7Search in Google Scholar

Zhong Y, Gao X, Wang H, Luo ZY, Ni MJ, Cen KF (2008) Fuel Processing Technology 89(11): 1025—1032.10.1016/j.fuproc.2008.04.004Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo