Cite

American Heart Association, Heart Disease and Stroke Statistics (2017). URL https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm{_}491265.pdf Search in Google Scholar

N. Jarrasse, T. Proietti, V. Crocher, J. Robertson, A. Sahbani, G. Morel, A. Roby-Brami, Robotic Exoskeletons:A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients, Frontiers in Human Neuroscience 8 (December) (2014) 1–13.doi:10.3389/fnhum.2014.00947. URL http://www.frontiersin.org/Human{_}Neuroscience/10.3389/fnhum.2014.00947/abstract10.3389/fnhum.2014.00947424945025520638 Search in Google Scholar

A. Frisoli, C. Procopio, C. Chisari, I. Creatini, L. Bonfiglio, M. Bergamasco, B. Rossi, M. Carboncini, Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke, Journal of NeuroEngineering and Rehabilitation 9 (1) (2012) 36.doi:10.1186/1743-0003-9-36.10.1186/1743-0003-9-36344343622681653 Search in Google Scholar

S. Guo, F. Zhang, F. Z. Shuxiang Guo2, 3, W. Wei, F. Zhao, Y. Wang, Kinematic Analysis of a Novel Exoskeleton Finger Rehabilitation Robot for Stroke Patients, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation (2014) 924–929doi:10.1109/ICMA.2014.6885821.10.1109/ICMA.2014.6885821 Search in Google Scholar

M. Zhang, B. Lange, C. Y. Chang, A. a. Sawchuk, A. a. Rizzo, Beyond the standard clinical rating scales: Fine-grained assessment of post-stroke motor functionality using wearable inertial sensors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2012) 6111–6115doi:10.1109/EMBC.2012.6347388.10.1109/EMBC.2012.634738823367323 Search in Google Scholar

M. A. Fikri, S. C. Abdullah, M. H. M. Ramli, Arm Exoskeleton for Rehabilitation Following Stroke by Learning Algorithm Prediction,Procedia Computer Science 42 (2014) 357–364.doi:10.1016/j.procs.2014.11.074. URL http://linkinghub.elsevier.com/retrieve/pii/S1877050914015129 Search in Google Scholar

Y. Ren, H. S. Park, L. Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 (2009) 761–765doi:10.1109/ICORR.2009.5209482.10.1109/ICORR.2009.5209482 Search in Google Scholar

a. Frisoli, E. Sotgiu, C. Procopio, M. Bergamasco, B. Rossi, C. Chisari, Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton, IEEE ... International Conference on Rehabilitation Robotics : [proceedings] 2011 (2011) 5975512.doi:10.1109/icorr.2011.5975512. URL http://ieeexplore.ieee.org/ielx5/5961155/5975334/05975512.pdf?tp={&}arnumber=5975512{&}isnumber=5975334 Search in Google Scholar

L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systems 91 (2017) 337–347.doi:10.1016/j.robot.2016.12.012. URL http://dx.doi.org/10.1016/j.robot.2016.12.01210.1016/j.robot.2016.12.012 Search in Google Scholar

T.-M. Wu, C.-H.Yang, D.-Z. Chen, Muscle activation levels during upper limb exercise performed using dumbbells and a spring-loaded exoskeleton, Journal of Medical and Biological Engineering 37 (3) (2017) 345–356. doi:10.1007/s40846-017-0226-4. URL https://doi.org/10.1007/s40846-017-0226-410.1007/s40846-017-0226-4 Search in Google Scholar

J. Hunt, H. Lee, P. Artemiadis, A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface, Journal of Mechanisms and Robotics 9 (1) (2016) 011002.doi:10.1115/1.4035087.URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035087 Search in Google Scholar

L. LIU, Y.-Y.SHI, L. XIE, a Novel Multi-Dof Exoskeleton Robot for Upper Limb Rehabilitation, Journal of Mechanics in Medicine and Biology 16 (08) (2016) 1640023.doi:10.1142/S0219519416400236. URL http://www.worldscientific.com/doi/abs/10.1142/S0219519416400236 Search in Google Scholar

X. Cui, W. Chen, X. Jin, S. K. Agrawal, Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance, IEEE/ASME Transactions on Mechatronics 22 (1) (2017) 161–172.doi:10.1109/TMECH.2016.2618888.10.1109/TMECH.2016.2618888 Search in Google Scholar

D. M. Baechle, E. D. Wetzel, S. K. Agrawal, MAXFAS: Mechatronic Arm Exoskeleton for Firearm Aim Stabilization, Journal of Mechanisms and Robotics 8 (6) (2016) 061013.doi:10.1115/1.4034015. URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4034015 Search in Google Scholar

F. Grimm, A. Walter, M. Sp??ler, G. Naros, W. Rosenstiel, A. Gharabaghi, Hybrid neuroprosthesis for the upper limb: Combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton, Frontiers in Neuroscience 10 (AUG) (2016) 1–11.doi:10.3389/fnins.2016.00367.10.3389/fnins.2016.00367497729527555805 Search in Google Scholar

J.-S. Botero V., J.-P.Restrepo Z., M.-T. De Ossa J., An angle measurement system of high resolution for the upper limbs using a low-cost servomotor, IOP Conference Series: Materials Science and Engineering 138 (1) (2016) 12006. URL http://stacks.iop.org/1757-899X/138/i=1/a=012006 Search in Google Scholar

J.-S. Botero Valencia, J.-P.Restrepo Zapata, M.-T. De Ossa Jimenez, Design and implementation of a high-resolution angle measurement system for the upper limbs using a low-cost servomotor, International Journal on Interactive Design and Manufacturing (IJIDeM)doi:10.1007/s12008-016-0346-z. URL http://link.springer.com/10.1007/s12008-016-0346-z Search in Google Scholar

F. Kinesiology, Length dependence of active force production in skeletal muscle,Applied Physiology 86 (5) (1999) 1445–1457. URL http://jap.physiology.org/content/86/5/1445 Search in Google Scholar

I. Galté’s, X. Jordana, M. Cos, A. Malgosa, J. Manyosa, Biomechanical model of pronation efficiency: New insight into skeletal adaptation of the hominoid upper limb, American Journal of Physical Anthropology 135 (3) (2008) 293–300.doi:10.1002/ajpa.20743. URL http:https://dx.doi.org/10.1002/ajpa.2074310.1002/ajpa.2074318000889 Search in Google Scholar

P. Ibanez-Gimeno, I. Galtes, X. Jordana, A. Malgosa, J. Manyosa, Biomechanics of forearm rotation: Force and efficiency of pronator teres,PLoS ONE 9 (2).doi:10.1371/journal.pone.0090319. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938685/10.1371/journal.pone.0090319 Search in Google Scholar

L. W. O’Sullivan, T. J. Gallwey, Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle, Journal of Electromyography and Kinesiology 12 (4) (2002) 275–285.doi:10.1016/S1050-6411(02)00014-7.10.1016/S1050-6411(02)00014-7 Search in Google Scholar

C. Paraschiv, P. Paraschiv, R. Cimpoeu, Determination of the Elbow Joint Resulting Torque and Obtaining Customized Numerical Results, Procedia - Social and Behavioral Sciences 117 (2014) 522–528.doi:10.1016/j.sbspro.2014.02.256. URL http://linkinghub.elsevier.com/retrieve/pii/S1877042814017868 Search in Google Scholar

L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systemsdoi:10.1016/j.robot.2016.12.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0921889016301877 Search in Google Scholar

J. Rosen, J. C. Perry, N. Manning, S. Burns, B. Hannaford, The human arm kinematics and dynamics during daily activities - Toward a 7 DOF upper limb powered exoskeleton, 2005 International Conference on Advanced Robotics, ICAR ‘05, Proceedings 2005 (July) (2005) 532–539.doi:10.1109/ICAR.2005.1507460. URL http://ieeexplore.ieee.org/document/1507460/10.1109/ICAR.2005.1507460 Search in Google Scholar

BioDigital InC, BioDigital (2016). URL https://human.biodigital.com/index.html Search in Google Scholar

Robotis, Dynamixel MX 64 (2016). URL http://support.robotis.com/en/product/actuator/dynamixel/mx{_}series/mx-64at{_}ar.htm Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other