Cite

Atanacković, T. M., Pilipović, S., Stanković, B., and Zorica, D. S. (2014), Fractional calculus with applications in mechanics: Wave propagation, impact and variational principles, Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ., 10.1002/9781118909065AtanackovićT. M.PilipovićS.StankovićB.ZoricaD. S.2014Fractional calculus with applications in mechanics: Wave propagation, impact and variational principlesMechanical Engineering and Solid Mechanics Series. ISTELondon; John Wiley & Sons, IncHoboken, NJ10.1002/9781118909065Open DOISearch in Google Scholar

Atanacković, T. M., Pilipović, S., Stanković, B., and Zorica, D. S. (2014), Fractional calculus with applications in mechanics: Vibrations and diffusion processes, Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ., 10.1002/9781118577530AtanackovićT. M.PilipovićS.StankovićB.ZoricaD. S.2014Fractional calculus with applications in mechanics: Vibrations and diffusion processesMechanical Engineering and Solid Mechanics Series. ISTELondon; John Wiley & Sons, IncHoboken, NJ10.1002/9781118577530Open DOISearch in Google Scholar

Bamberger, A. and Duong, T. H. (1986), Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I, Math. Methods Appl. Sci. 8(1), pp. 405–435, 10.1002/mma.1670080127BambergerA.DuongT. H.1986Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction ďune onde acoustiqueI, Math. Methods Appl. Sci.8140543510.1002/mma.1670080127Open DOISearch in Google Scholar

Banjai, L. and Schanz, M. (2012), Wave propagation problems treated with convolution quadrature and BEM, Fast boundary element methods in engineering and industrial applications, pp. 145–184, Lect. Notes Appl. Comput. Mech., 63, Springer, Heidelberg, 10.1007/978-3-642-25670-7_5BanjaiL.SchanzM.2012Wave propagation problems treated with convolution quadrature and BEM, Fast boundary element methods in engineering and industrial applications145184Lect. Notes Appl. Comput. Mech.63SpringerHeidelberg10.1007/978-3-642-25670-7_5Open DOISearch in Google Scholar

Bécache, E., Ezziani, A., and Joly, P. (2004), A mixed finite element approach for viscoelastic wave propagation, Comput. Geosci. 8(3), pp. 255–299, 10.1007/s10596-005-3772-8BécacheE.EzzianiA.JolyP.2004A mixed finite element approach for viscoelastic wave propagationComput. Geosci.8325529910.1007/s10596-005-3772-8Open DOISearch in Google Scholar

Colombaro, I., Giusti, A., and Mainardi, F. (2017), On the propagation of transient waves in a viscoelastic Bessel medium, Z. Angew. Math. Phys. 68(3), Art. 62, 13 pp., 10.1007/s00033-017-0808-6ColombaroI.GiustiA.MainardiF.2017On the propagation of transient waves in a viscoelastic Bessel mediumZ. Angew. Math. Phys.683621310.1007/s00033-017-0808-6Open DOISearch in Google Scholar

Colombaro, I., Giusti, A., and Mainardi, F. (2017), On transient waves in linear viscoelasticity, Wave Motion74, pp. 191–212, 10.1016/j.wavemoti.2017.07.008ColombaroI.GiustiA.MainardiF.2017On transient waves in linear viscoelasticityWave Motion7419121210.1016/j.wavemoti.2017.07.008Open DOISearch in Google Scholar

Fabrizio, M. and Morro, A. (1992), Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics12, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 10.1137/1.9781611970807FabrizioM.MorroA.1992Mathematical problems in linear viscoelasticitySIAM Studies in Applied Mathematics12Society for Industrial and Applied Mathematics (SIAM)Philadelphia, PA10.1137/1.9781611970807Open DOISearch in Google Scholar

Giusti, A. and Colombaro, I. (2018), Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer. Simul. 56, pp. 138–143, 10.1016/j.cnsns.2017.08.002GiustiA.ColombaroI.2018Prabhakar-like fractional viscoelasticityCommun. Nonlinear Sci. Numer. Simul.5613814310.1016/j.cnsns.2017.08.002Open DOISearch in Google Scholar

Gurtin, M. E. and Sternberg, E. (1962), On the linear theory of viscoelasticity, Arch. Rational Mech. Anal. 11, pp. 291–356, 10.1007/bf00253942GurtinM. E.SternbergE.1962On the linear theory of viscoelasticityArch. Rational Mech. Anal.1129135610.1007/bf00253942Open DOISearch in Google Scholar

Hassell, M. and Sayas, F.-J. (2016), Convolution quadrature for wave simulations, Numerical simulation in physics and engineering, pp. 71–159, SEMA SIMAI Springer Ser., 9, Springer, [Cham], 10.1007/978-3-319-32146-2_2HassellM.SayasF.J.2016Convolution quadrature for wave simulationsNumerical simulation in physics and engineering71159SEMA SIMAI Springer Ser9SpringerCham10.1007/978-3-319-32146-2_2Open DOISearch in Google Scholar

Keramat, A. and Heidari Shirazi, K. (2014), Finite element based dynamic analysis of viscoelastic solids using the approximation of Volterra integrals, Finite Elem. Anal. Des. 86, pp. 89–100, 10.1016/j.finel.2014.03.010KeramatA.Heidari ShiraziK.2014Finite element based dynamic analysis of viscoelastic solids using the approximation of Volterra integralsFinite Elem. Anal. Des.868910010.1016/j.finel.2014.03.010Open DOISearch in Google Scholar

Larsson, S., Racheva, M., and Saedpanah, F. (2015), Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity, Comput. Methods Appl. Mech. Engrg. 283, pp. 196–209, 10.1016/j.cma.2014.09.018LarssonS.RachevaM.SaedpanahF.2015Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticityComput. Methods Appl. Mech. Engrg.28319620910.1016/j.cma.2014.09.018Open DOISearch in Google Scholar

Lee, J. J. (2017), Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity, Calcolo54(2), pp. 587–607, 10.1007/s10092-016-0200-5LeeJ. J.2017Analysis of mixed finite element methods for the standard linear solid model in viscoelasticityCalcolo54258760710.1007/s10092-016-0200-5Open DOISearch in Google Scholar

Li, H., Zhao, Z., and Luo, Z. (2016), A space-time continuous finite element method for 2D viscoelastic wave equation, Bound. Value Probl. Paper No. 53, 17 pp., 10.1186/s13661-016-0563-1LiH.ZhaoZ.LuoZ.2016A space-time continuous finite element method for 2D viscoelastic wave equationBound. Value Probl.531710.1186/s13661-016-0563-1Open DOISearch in Google Scholar

Lu, J.-F. and Hanyga, A. (2004), Numerical modelling method for wave propagation in a linear viscoelastic medium with singular memory, Geophys. J. Int. 159(2), pp. 688–702, 10.1111/j.1365-246x.2004.02409.xLuJ.F.HanygaA.2004Numerical modelling method for wave propagation in a linear viscoelastic medium with singular memoryGeophys. J. Int.159268870210.1111/j.1365-246x.2004.02409.xOpen DOISearch in Google Scholar

Lubich, C. (1994), On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math. 67(3), pp. 365–389, 10.1007/s002110050033LubichC.1994On the multistep time discretization of linear initial-boundary value problems and their boundary integral equationsNumer. Math.67336538910.1007/s002110050033Open DOISearch in Google Scholar

Mainardi, F. (1982), Wave propagation in viscoelastic media, Pitman Advanced Pub. ProgramMainardiF.1982Wave propagation in viscoelastic mediaPitman Advanced Pub. Program10.1115/1.3167123Search in Google Scholar

Mainardi, F. (2010), Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial College Press, London, 10.1142/9781848163300MainardiF.2010Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical modelsImperial College PressLondon10.1142/9781848163300Open DOISearch in Google Scholar

Mainardi, F. (2012), An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal. 15(4), pp. 712–717, 10.2478/s13540-012-0048-6MainardiF.2012An historical perspective on fractional calculus in linear viscoelasticityFract. Calc. Appl. Anal.15471271710.2478/s13540-012-0048-6Open DOISearch in Google Scholar

Mainardi, F. (2018), A note on the equivalence of fractional relaxation equations to differential equations with varying coefficients, Mathematics6(1), 10.3390/math6010008MainardiF.2018A note on the equivalence of fractional relaxation equations to differential equations with varying coefficientsMathematics6110.3390/math6010008Open DOISearch in Google Scholar

Mainardi, F. and Gorenflo, R. (2000), On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. 118(1-2), pp. 283–299, 10.1016/s0377-0427(00)00294-6MainardiF.GorenfloR.2000On Mittag-Leffler-type functions in fractional evolution processesJ. Comput. Appl. Math.1181-228329910.1016/s0377-0427(00)00294-6Open DOISearch in Google Scholar

Marques, S. P. C. and Creus, G. J. (2012), Computational Viscoelasticity, Springer Berlin Heidelberg, 10.1007/978-3-642-25311-9MarquesS. P. C.CreusG. J.2012Computational ViscoelasticitySpringer Berlin Heidelberg10.1007/978-3-642-25311-9Open DOISearch in Google Scholar

Mesquita, A. and Coda, H. (2003), A two-dimensional Bem/Fem coupling applied to viscoelastic analysis of composite domains, Int. J. Numer. Meth. Eng. 57(2), pp. 251–270, 10.1002/nme.676MesquitaA.CodaH.2003A two-dimensional Bem/Fem coupling applied to viscoelastic analysis of composite domainsInt. J. Numer. Meth. Eng.57225127010.1002/nme.676Open DOISearch in Google Scholar

Muñoz, G. A., Sarantopoulos, Y., and Tonge, A. (1999), Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134(1), pp. 1–33MuñozG. A.SarantopoulosY.TongeA.1999Complexifications of real Banach spaces, polynomials and multilinear mapsStudia Math.134113310.4064/sm-134-1-1-33Search in Google Scholar

Näsholm, S. P. and Holm, S. (2013), On a fractional Zener elastic wave equation, Fract. Calc. Appl. Anal. 16(1), pp. 26–50, 10.2478/s13540-013-0003-1NäsholmS. P.HolmS.2013On a fractional Zener elastic wave equationFract. Calc. Appl. Anal.161265010.2478/s13540-013-0003-1Open DOISearch in Google Scholar

Pazy, A. (1983), Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences44, Springer-Verlag, New York, 10.1007/978-1-4612-5561-1PazyA.1983Semigroups of linear operators and applications to partial differential equationsApplied Mathematical Sciences44Springer-VerlagNew York10.1007/978-1-4612-5561-1Open DOISearch in Google Scholar

Perdikaris, P. and Karniadakis, G. E. (2014), Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng. 42(5), pp. 1012–1023, 10.1007/s10439-014-0970-324414838PerdikarisP.KarniadakisG. E.2014Fractional-order viscoelasticity in one-dimensional blood flow modelsAnn. Biomed. Eng.4251012102310.1007/s10439-014-0970-324414838Open DOISearch in Google Scholar

Phan-Thien, N. (2013), Understanding viscoelasticity: An introduction to Rheology, Graduate Texts in Physics, Springer-Verlag, Berlin, 10.1007/978-3-642-32958-6Phan-ThienN.2013Understanding viscoelasticity: An introduction to RheologyGraduate Texts in PhysicsSpringer-VerlagBerlin10.1007/978-3-642-32958-6Open DOISearch in Google Scholar

Rivière, B., Shaw, S., Wheeler, M. F., and Whiteman, J. R. (2003), Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity, Numer. Math. 95(2), pp. 347–376, 10.1007/s002110200394RivièreB.ShawS.WheelerM. F.WhitemanJ. R.2003Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticityNumer. Math.95234737610.1007/s002110200394Open DOISearch in Google Scholar

Sayas, F.-J. (2016), Retarded potentials and time domain boundary integral equations: A road map, Springer, 10.1007/978-3-319-26645-9SayasF.J.2016Retarded potentials and time domain boundary integral equations: A road mapSpringer10.1007/978-3-319-26645-9Open DOISearch in Google Scholar

Shevchenko, V. P. and Neskorodev, R. N. (2014), A numerical-analytical method for solving problems of linear viscoelasticity, Internat. Appl. Mech. 50(3), pp. 263–273, 10.1007/s10778-014-0629-7ShevchenkoV. P.NeskorodevR. N.2014A numerical-analytical method for solving problems of linear viscoelasticityInternat. Appl. Mech.50326327310.1007/s10778-014-0629-7Open DOISearch in Google Scholar

Trèves, F. (1967), Topological vector spaces, distributions and kernels, Academic Press, New York-LondonTrèvesF.1967Topological vector spaces, distributions and kernelsAcademic PressNew York-LondonSearch in Google Scholar

Troyani, N. and Pérez, A. (2014), A comparison of a finite element only scheme and a BEM/FEM method to compute the elastic-viscoelastic response in composite media, Finite Elem. Anal. Des. 88, pp. 42–54, 10.1016/j.finel.2014.05.003TroyaniN.PérezA.2014A comparison of a finite element only scheme and a BEM/FEM method to compute the elastic-viscoelastic response in composite mediaFinite Elem. Anal. Des.88425410.1016/j.finel.2014.05.003Open DOISearch in Google Scholar

Yu, Y., Perdikaris, P., and Karniadakis, G. E. (2016), Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms, J. Comput. Phys. 323, pp. 219–242, 10.1016/j.jcp.2016.06.03829104310YuY.PerdikarisP.KarniadakisG. E.2016Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysmsJ. Comput. Phys.32321924210.1016/j.jcp.2016.06.038566890829104310Open DOISearch in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics