1. bookVolume 59 (2010): Issue 1-6 (December 2010)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Isolation, Characterization and Phylogenetic Analysis of Nucleotide Binding Site-encoding Disease-resistance Gene Analogues from European Aspen (Populus tremula)

Published Online: 20 Oct 2017
Volume & Issue: Volume 59 (2010) - Issue 1-6 (December 2010)
Page range: 68 - 77
Received: 05 Feb 2010
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

The majority of verified plant disease resistance genes (R genes) isolated to date was of the nucleotide binding site-leucine rich repeat (NBS-LRR) class. The conservation between different NBS-LRR R genes opens the avenue for the use of PCR based strategies in isolating and cloning other R gene family members or analogs (resistance gene analogue, RGA) using degenerate primers for these conserved regions. In this study, to better understand the R gene in European aspen (Populus tremula), a perennial tree, we used degenerate primers to amplify RGA sequences from European aspen. Cloning and sequence characterization identified 37 European aspen RGAs, which could be phylogenetically classified into seven subfamilies. Deduced amino acid sequences of European aspen RGAs showed strong identity, ranging from 30.41 to 46.63%, to toll interleukin receptor (TIR) R gene subfamily. BLAST searches with reference to the genomic sequence of P. trichocarpa found 209 highly homologous regions distributed in 28 genomic loci, suggesting the abundance and divergence of NBS-encoding R genes in European aspen genome. Although, numerous studies have reported that plant R genes are under diversifying selection for specificity to evolving pathogens, non-synonymous to synonymous nucleotide substitution (dN/dS) ratio were <1 for NBS domains of European aspen RGA, showing the evidence of purifying selection in this perennial tree. In further analysis, many intergenic exchanges were also detected among these RGAs, indicating a probable role in homogenising NBS domains. The present study permits insights into the origin, diversification, evolution and function of NBS-LRR R genes in perennial species like European aspen and will be useful for further R gene isolation and exploitation.

Keywords

ALTSCHUL, S. F., T. L. MADDEN, A. A. SCHAFFER, J. ZHANG, Z. ZHANG, W. MILLER and D. J. LIPMAN (1997): Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17): 3389-402.10.1093/nar/25.17.33891469179254694Open DOISearch in Google Scholar

AMELINE-TORREGROSA, C., B. B. WANG, M. S. O’BLENESS, S. DESHPANDE, H. ZHU, B. ROE, N. D. YOUNG and S. B.CANNON (2008): Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1): 5-21.10.1104/pp.107.104588223056717981990Search in Google Scholar

ASHFIELD, T., L. E. ONG, K. NOBUTA, C. M. SCHNEIDER and R. W. INNES (2004): Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16(2): 309-18.10.1105/tpc.01672534190514742871Open DOISearch in Google Scholar

BAI, J., L. A. PENNILL, J. NING, S. W. LEE, J. RAMALINGAM, C. A. WEBB, B. ZHAO, Q. SUN, J. C. NELSON, J. E. LEACH and S. H. HULBERT (2002): Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12(12): 1871-84.10.1101/gr.45490218756712466291Search in Google Scholar

BUSTAMENTE, C. D., J. P. TOWNSEND and D. L. HARTL (2000): Solvent accessibility and purifying selection within proteins of Escherichia coli and Salmonella enterica. Mol Biol Evol 17(2): 301-8.10.1093/oxfordjournals.molbev.a02631010677853Search in Google Scholar

DEYOUNG, B. J. and R. W. INNES (2006): Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12): 1243-9.10.1038/ni1410197315317110940Search in Google Scholar

DONALD, T. M., F. PELLERONE, A. F. ADAM-BLONDON, A. BOUQUET, M. R. THOMAS and I. B. DRY (2002): Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104(4): 610-618.10.1007/s00122-001-0768-112582665Open DOISearch in Google Scholar

FLOR, H. H. (1971): Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275-296.10.1146/annurev.py.09.090171.001423Open DOISearch in Google Scholar

GLYNN, N. C., J. C. COMSTOCK, S. G. SOOD, P. M. DANG and J. X. CHAPARRO (2008): Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.). Pest Manag Sci 64(1): 48-56.10.1002/ps.146917935262Search in Google Scholar

HATTENDORF, A. and T. DEBENER (2007): Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiol Plant 129: 775-786.10.1111/j.1399-3054.2007.00876.xSearch in Google Scholar

IRIGOYEN, M. L., E. FERRER and Y. LOARCE (2006): Cloning and characterization of resistance gene analogs from Avena species. Genome 49(1): 54-63.10.1139/g05-08716462901Open DOISearch in Google Scholar

KANAZIN, V., L. F. MAREK and R. C. SHOEMAKER (1996): Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93(21): 11746-50. 10.1073/pnas.93.21.11746381298876208Open DOISearch in Google Scholar

KARLIN, S. and S. F. ALTSCHUL (1990): Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87(6): 2264-8.10.1073/pnas.87.6.2264536672315319Search in Google Scholar

KOHLER, A., C. RINALDI, S. DUPLESSIS, M. BAUCHER, D. GEELEN, F. DUCHAUSSOY, B. C. MEYERS, W. BOERJAN and F. MARTIN (2008): Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6): 619-36.10.1007/s11103-008-9293-918247136Open DOISearch in Google Scholar

KUANG, H., S. S. WOO, B. C. MEYERS, E. NEVO and R. W. MICHELMORE (2004): Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16(11): 2870-94.10.1105/tpc.104.02550252718615494555Open DOISearch in Google Scholar

KUANG, H., K. S. CALDWELL, B. C. MEYERS and R. W. MICHELMORE (2008): Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J 54(1): 69-80.10.1111/j.1365-313X.2008.03408.x18182023Search in Google Scholar

LEE, S. Y., J. S. SEO, M. RODRIGUEZ-LANETTY and D. H. LEE (2003): Comparative analysis of superfamilies of NBSencoding disease resistance gene analogs in cultivated and wild apple species. Mol Genet Genomics 269(1): 101-8.10.1007/s00438-003-0816-412715158Search in Google Scholar

LEISTER, D., A. BALLVORA, F. SALAMINI and C. GEBHARDT (1996): A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14(4): 421-9.10.1038/ng1296-4218944022Open DOISearch in Google Scholar

LESCOT, M., S. ROMBAUTS, J. ZHANG, S. AUBOURG, C. MATHE, S. JANSSON, P. ROUZE and W. BOERJAN (2004): Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor Appl Genet 109(1): 10-22.10.1007/s00122-004-1621-015085260Search in Google Scholar

MARTINEZ ZAMORA, M. G., A. P. CASTAGNARO and J. C. DIAZ RICCI (2004): Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 272(4): 480-7.10.1007/s00438-004-1079-415565466Search in Google Scholar

MEYERS, B. C., A. W. DICKERMAN, R. W. MICHELMORE, S. SIVARAMAKRISHNAN, B. W. SOBRAL and N. D. YOUNG (1999): Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20(3): 317-32.10.1046/j.1365-313X.1999.t01-1-00606.x10571892Open DOISearch in Google Scholar

MEYERS, B. C., A. KOZIK, A. GRIEGO, H. KUANG and R. W. MICHELMORE (2003): Genome-wide analysis of NBSLRR- encoding genes in Arabidopsis. Plant Cell 15(4): 809-34. MEYERS, B. C., S. KAUSHIK and R. S. NANDETY (2005): Evolving disease resistance genes. Curr Opin Plant Biol 8(2): 129-34.10.1016/j.pbi.2005.01.00215752991Search in Google Scholar

MICHELMORE, R. W. and B. C. MEYERS (1998): Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8(11): 1113-30.10.1101/gr.8.11.11139847076Search in Google Scholar

MILLER, R. N., D. J. BERTIOLI, F. C. BAURENS, C. M. SANTOS, P. C. ALVES, N. F. MARTINS, R. C. TOGAWA, M. T. SOUZA, JR. and G. J. PAPPAS, JR. (2008): Analysis of non- TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8: 15.10.1186/1471-2229-8-15226208118234103Search in Google Scholar

MURRAY, M. G. and W. F. THOMPSON (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19): 4321-5.10.1093/nar/8.19.43213242417433111Search in Google Scholar

NEI, M. and T. GOJOBORI (1986): Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5): 418-26.Search in Google Scholar

PAN, Q., J. WENDEL and R. FLUHR (2000): Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50(3): 203-13.10.1007/s00239991002310754062Open DOISearch in Google Scholar

ROZAS, J., J. C. SANCHEZ-DELBARRIO, X. MESSEGUER andR. ROZAS (2003): DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18): 2496-7.10.1093/bioinformatics/btg35914668244Open DOISearch in Google Scholar

SAITOU, N. and M. NEI (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4): 406-25.Search in Google Scholar

SAWYER, S. (1989): Statistical tests for detecting gene conversion. Mol Biol Evol 6(5): 526-38.Search in Google Scholar

SORIANO, J. M., S. VILANOVA, C. ROMERO, G. LLACER and M. L. BADENES (2005): Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110(5): 980-9.10.1007/s00122-005-1920-015714329Search in Google Scholar

TAMURA, K., J. DUDLEY, M. NEI and S. KUMAR (2007): MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8): 1596-9.10.1093/molbev/msm09217488738Search in Google Scholar

THOMPSON, J. D., T. J. GIBSON, F. PLEWNIAK, F. JEANMOUGIN and D. G. HIGGINS (1997): The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24): 4876-82.10.1093/nar/25.24.48761471489396791Open DOISearch in Google Scholar

TIAN, Y., L. FAN, T. THURAU, C. JUNG and D. CAI (2004): The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 58(1): 40-53.10.1007/s00239-003-2524-414743313Search in Google Scholar

TUSKAN, G. A., S. DIFAZIO, S. JANSSON, J. BOHLMANN, I. GRIGORIEV, U. HELLSTEN, N. PUTNAM, S. RALPH, S. ROMBAUTS, A. SALAMOV, J. SCHEIN, L. STERCK, A. AERTS, R. R. BHALERAO, R. P. BHALERAO, D. BLAUDEZ, W. BOERJAN, A. BRUN, A. BRUNNER, V. BUSOV, M. CAMPBELL, J. CARLSON, M. CHALOT, J. CHAPMAN, G. L. CHEN, D. COOPER, P. M. COUTINHO, J. COUTURIER, S. COVERT, Q. CRONK, R. CUNNINGHAM, J. DAVIS, S. DEGROEVE, A. DEJARDIN, C. DEPAMPHILIS, J. DETTER, B. DIRKS, I. DUBCHAK, S. DUPLESSIS, J. EHLTING, B. ELLIS, K. GENDLER, D. GOODSTEIN, M. GRIBSKOV, J. GRIMWOOD, A. GROOVER, L. GUNTER, B. HAMBERGER, B. HEINZE, Y. HELARIUTTA, B. HENRISSAT, D. HOLLIGAN, R. HOLT, W. HUANG, N. ISLAM-FARIDI, S. JONES, M. JONESRHOADES, R. JORGENSEN, C. JOSHI, J. KANGASJARVI, J. KARLSSON, C. KELLEHER, R. KIRKPATRICK, M. KIRST, A. KOHLER, U. KALLURI, F. LARIMER, J. LEEBENS-MACK, J. C. LEPLE, P. LOCASCIO, Y. LOU, S. LUCAS, F. MARTIN, B. MONTANINI, C. NAPOLI, D. R. NELSON, C. NELSON, K. NIEMINEN, O. NILSSON, V. PEREDA, G. PETER, R. PHILIPPE, G. PILATE, A. POLIAKOV, J. RAZUMOVSKAYA, P. RICHARDSON, C. RINALDI, K. RITLAND, P. ROUZE, D. RYABOY, J. SCHMUTZ, J. SCHRADER, B. SEGERMAN, H. SHIN, A. SIDDIQUI, F. STERKY, A. TERRY, C. J. TSAI, E. UBERBACHER, P. UNNEBERG, J. VAHALA, K. WALL, S. WESSLER, G. YANG, T. YIN, C. DOUGLAS, M. MARRA, G. SANDBERG, Y. VAN DE PEER and D. ROKHSAR (2006): The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793): 1596-604.10.1126/science.112869116973872Search in Google Scholar

VAN DER HOORN, R. A. and S. KAMOUN (2008): From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors. Plant Cell.10.1105/tpc.108.060194255362018723576Search in Google Scholar

YANG, S., T. GU, C. PAN, Z. FENG, J. DING, Y. HANG, J. Q. CHEN and D. TIAN (2008): Genetic variation of NBSLRR class resistance genes in rice lines. Theor Appl Genet 116(2): 165-77.10.1007/s00122-007-0656-417932646Search in Google Scholar

ZHANG, Q., Z. Y. ZHANG, S. Z. LIN, H. Q. ZHENG, Y. Z. LIN, X. M. AN, Y. LI and H. X. LI (2008): Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biol (Stuttg) 10(3): 310-22.10.1111/j.1438-8677.2008.00029.x18426478Open DOISearch in Google Scholar

ZHANG, Y., S. G. ZHANG, L. W. QI, B. LIU, J. M. GAO, C. B. CHEN, X. L. LI and W. Q. SONG (2005): Chromosome microdissection, cloning and painting of the chromosome 1 in poplar (Populus tremula). Silvae Genetica 54: 211-217.10.1515/sg-2005-0031Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo