1. bookVolume 59 (2010): Issue 1-6 (December 2010)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Open Access

Use of Microsatellite Markers in an American Beech (Fagus grandifolia) Population and Paternity Testing

Published Online: 20 Oct 2017
Volume & Issue: Volume 59 (2010) - Issue 1-6 (December 2010)
Page range: 62 - 68
Received: 22 Oct 2008
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Cross-species amplification of six microsatellite markers from European beech (Fagus sylvatica Linn) and nine markers from Japanese beech (Fagus crenata Blume) was tested in American beech (Fagus grandifolia Ehrh.). Three microsatellites from each species were successfully adapted for use in American beech and were found to be highly polymorphic, with 4-22 alleles at each locus and an expected heterozygosity value of 0.291 to 0.913. Twenty-five trees (including two clonal clusters) from a mature stand were sampled and genotyped to compute population statistics. No linkage disequilibrium between pairs of loci was detected, and the marker loci indicated that the population is at Hardy- Weinberg equilibrium. The markers were also used to genotype two full-sibling families consisting of a combined total of 99 individuals and were found to contain sufficient genetic information to assign paternity using a maximum likelihood method.

Keywords

ALDRICH, P. R., M. JAGTAP, C. H. MICHLER and J. ROMEROSEVERSON (2003): Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genet. 52: 3-4.Search in Google Scholar

DOYLE, J. J. and E. E. DICKSON (1987): Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36: 715-722.10.2307/1221122Open DOISearch in Google Scholar

DOW, B. D. and M.V. ASHLEY (1998): High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. of Heredity 89: 62-70.10.1093/jhered/89.1.62Open DOISearch in Google Scholar

GIANFRANCESCHI, L., N. SEGLIAS, R. TARCHINI, M. KOMJANC and C. GESSLER (1998): Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96: 1069-1076.10.1007/s001220050841Open DOISearch in Google Scholar

HEARNE, C. M., S. GHOSH and J. A. TODD (1992): Microsatellites for linkage analysis of genetic traits. Trends Genet. 8: 288-94.10.1016/0168-9525(92)90137-SSearch in Google Scholar

JONES, M. E., M. SHEPHERD, R. HENRY and A. DELVES (2008): Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Gen. Gen. 4: 37-47.Search in Google Scholar

KALINOWSKI, S. T., M. L. TAPER and T. C. MARSHALL (2007): Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106.10.1111/j.1365-294X.2007.03089.x17305863Open DOISearch in Google Scholar

KALINOWSKI, S.T. (2006): HW-QUICKCHECK: an easy-touse computer program for checking genotypes for agreement with Hardy-Weinberg expectations. Mol. Ecol. Notes 6: 974-979.10.1111/j.1471-8286.2006.01456.xOpen DOISearch in Google Scholar

KITAMURA, K., J. O’NEIL, D. F. WHIGHAM and S. KAWANO (1998): Demographic genetic analyses of the American beech (Fagus grandifolia Ehrh.). Genetic variations of seed populations in Maryland. Plant Species Biol. 13: 147-154.10.1111/j.1442-1984.1998.tb00255.xSearch in Google Scholar

KOCH, J. L. and D.W. CAREY (2004): Control cross-pollinations with American beech trees that are resistant to beech bark disease. In: Proceedings of the 14th Central Hardwoods Forest Conference. Gen. Tech. Rep. NE-316. USDA Forest Service, Northeastern Research Station, Newtown Square, PA, 358-364 p. Search in Google Scholar

KUBISIAK, T. L. and J. H. ROBERDS (2006): Genetic structure of American chestnut populations based on neutral DNA markers. In: STEINER, K. C. and J. E. CARLSON, eds. 2006. Restoration of American Chestnut to Forest Lands-Proceedings of a conference and workshop. Natural Resources Report NPS/NCR/CUE/NRR-2006/001. National Park Service, Washington, D.C. 109-122.Search in Google Scholar

LIAN, C., M. MIWA and T. HOGETSU (2001): Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity 87: 88-98.10.1046/j.1365-2540.2001.00913.x11678991Open DOISearch in Google Scholar

MARSHALL, T. C., J. SLATE, L. E. B. KRUUK and J. M. PETERSON (1998): Statistical confidence for likelihoodbased paternity inference in natural populations. Mol. Ecol. 7: 639-655.10.1046/j.1365-294x.1998.00374.x9633105Open DOISearch in Google Scholar

MARQUARDT, P. E., C. S. ECHT, B. K. EPPERSON and D. M. PUBANZ (2007): Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 37: 2652-2662.Search in Google Scholar

PASTORELLI, R., M. J. M. SMULDERS, W. P. C. VAN’T WESTENDE, B. VOSMAN, R. GIANNINI, C. VETTORI and G. G. VENDRAMIN (2003): Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol. Ecol. Notes 3: 76-78.10.1046/j.1471-8286.2003.00355.xOpen DOISearch in Google Scholar

RICE, W. R. (1989): Analyzing tables of statistical tests. Evolution 43: 223-225.28568501Search in Google Scholar

ROSSI, P., G. G. VENDRAMIN and R. GIANNI (1996): Estimation of mating system parameters in two Italian natural populations of Fagus sylvatica. Can. J. For. Res. 26: 1187-1192.Search in Google Scholar

ROUSSET, F. (2008): GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8: 103-106.Search in Google Scholar

SCALFI, M., M. TROGGIO, P. PIOVANI, S. LEONARDI, G. MAGNASCHI, G. G. BENDRAMIN and P. MENOZZI (2004): A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sylvatica L.). Theor. Appl. Genet. 108: 433-441.Search in Google Scholar

STEINKELLNER, H., C. LEXER, E. TURETSCHEK and J. GLOSSL (1997): Conservation of (GA)n microsatellite loci between Quercus species. Mol. Ecol. 6: 1189-1194.10.1046/j.1365-294X.1997.00288.xOpen DOISearch in Google Scholar

STORME, V., A.V. BROECK, B. IVENS, D. HALFMAERTEN, J. VAN SLYCKEN, S. CSTIGLIONE, F. GRASSI, T. FOSSATI, J. E. COTTRELL, H. E. TABBENER, F. LEFEVRE, C. SAINTAGNE, S. FLUCH, V. KRYSTUFEK, K. BURG, S. BORDACS, A. BOROVICS, K. GEBHARDT, B. VORNAM, A. POHL, N. ALBA, D. AGUNDEZ, C. MAESTRO, E. NOTIVOL, J. BOVENSCHEN, B. S. VAN DAM, J. VAN DER SCHOOT, B. VOSMAN, W. BOERJAN and M. J. M. SMULDERS (2004): Ex-situ conservation of black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor. Appl. Genet. 108: 969-981.10.1007/s00122-003-1523-615067382Search in Google Scholar

STREIFF, R. DUCOUSSO, C. LEXER, H. STEINKELLNER, J. GLOESSL and A. KREMER (1999): Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molec. Ecol. 8: 831-841.Search in Google Scholar

TANAKA, K, Y. TSUMURA and T. NAKAMURA (1999): Development and polymorphism of microsatellite markers for F. crenata and the closely related species, F. japonica. Theor. App. Genet. 99: 11-15.Search in Google Scholar

VICTORY, E. R., J. C. GLAUBITZ, O. E. RHODES JR. and K. E. WOESTE (2006): Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Amer. J. Bot. 93: 118-126.10.3732/ajb.93.1.118Search in Google Scholar

WANG, Y. (2008): Microsatellite transferability in Chestnut. J. Amer. Soc. Hort. Sci. 133: 692-700.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo