Cite

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29.SiegelRNaishadhamDJemalACancer statistics, 2012CA Cancer J Clin201262102910.3322/caac.20138Search in Google Scholar

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.HanahanDWeinbergRAHallmarks of cancer: the next generationCell20111446467410.1016/j.cell.2011.02.013Search in Google Scholar

Duffy MJ. The war on cancer: are we winning? Tumour Biol 2013; 34:1275-84.DuffyMJThe war on cancer: are we winning?Tumour Biol20133412758410.1007/s13277-013-0759-2Search in Google Scholar

Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003; 8: 1128-37.KolbHCSharplessKBThe growing impact of click chemistry on drug discoveryDrug Discov Today2003811283710.1016/S1359-6446(03)02933-7Search in Google Scholar

Košmrlj J. Click Triazoles, 1 edn, vol. 28. Berlin Heidelberg: Springer-Verlag; 2012.KošmrljJClick Triazoles128Berlin HeidelbergSpringer-Verlag201210.1007/978-3-642-29429-7Search in Google Scholar

Aizpurua JM, Fratila RM, Monasterio Z, Perez-Esnaola N, Andreieff E, Irastorza A, et al. Triazolium cations: from the “click” pool to multipurpose applications. New J Chem 2014; 38: 474-80.AizpuruaJMFratilaRMMonasterioZPerez-EsnaolaNAndreieffEIrastorzaAet alTriazolium cations: from the “click” pool to multipurpose applicationsNew J Chem2014384748010.1039/C3NJ00667KSearch in Google Scholar

Massarotti A, Aprile S, Mercalli V, Del Grosso E, Grosa G, Sorba G, et al. Are 1,4-and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups? Chem Med Chem 2014; 9: 2497-508.MassarottiAAprileSMercalliVDel GrossoEGrosaGSorbaGet alAre 1,4-and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups?Chem Med Chem20149249750810.1002/cmdc.20140223325079879Search in Google Scholar

Zhou CH, Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 2012; 19: 239-80.ZhouCHWangYRecent researches in triazole compounds as medicinal drugsCurr Med Chem2012192398010.2174/09298671280341421322320301Search in Google Scholar

da Silva EN, Jr., Cavalcanti BC, Guimaraes TT, Pinto Mdo C, Cabral IO, Pessoa C, et al. Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur J Med Chem 2011; 46: 399-410.da SilvaENJrCavalcantiBCGuimaraesTTPinto MdoCCabralIOPessoaCet alSynthesis and evaluation of quinonoid compounds against tumor cell linesEur J Med Chem20114639941010.1016/j.ejmech.2010.11.00621115213Search in Google Scholar

Ahmed N, Konduru NK, Ahmad S, Owais M. Design, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell lines. Eur J Med Chem 2014; 82: 552-64.AhmedNKonduruNKAhmadSOwaisMDesign, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell linesEur J Med Chem2014825526410.1016/j.ejmech.2014.06.00924941129Search in Google Scholar

Chinthala Y, Kumar Domatti A, Sarfaraz A, Singh SP, Kumar Arigari N, Gupta N, et al. Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. Eur J Med Chem 2013; 70: 308-14.ChinthalaYKumar DomattiASarfarazASinghSPKumar ArigariNGuptaNet alSynthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ringEur J Med Chem2013703081410.1016/j.ejmech.2013.10.005Search in Google Scholar

Majeed R, Sangwan PL, Chinthakindi PK, Khan I, Dangroo NA, Thota N, et al. Synthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agents. Eur J Med Chem 2013; 63: 782-92.MajeedRSangwanPLChinthakindiPKKhanIDangrooNAThotaNet alSynthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agentsEur J Med Chem2013637829210.1016/j.ejmech.2013.03.028Search in Google Scholar

Ou L, Han S, Ding W, Jia P, Yang B, Medina-Franco JL, et al. Parallel synthesis of novel antitumor agents: 1,2,3-triazoles bearing biologically active sulfonamide moiety and their 3D-QSAR. Mol Divers 2011; 15: 927-46.OuLHanSDingWJiaPYangBMedina-FrancoJLet alParallel synthesis of novel antitumor agents: 1,2,3-triazoles bearing biologically active sulfonamide moiety and their 3D-QSARMol Divers2011159274610.1007/s11030-011-9324-3Search in Google Scholar

Glowacka IE, Balzarini J, Wroblewski AE. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 2013; 70: 703-22.GlowackaIEBalzariniJWroblewskiAEThe synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linkerEur J Med Chem2013707032210.1016/j.ejmech.2013.10.057Search in Google Scholar

Sambasiva Rao P, Kurumurthy C, Veeraswamy B, Santhosh Kumar G, Poornachandra Y, Ganesh Kumar C, et al. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur J Med Chem 2014; 80: 184-91.Sambasiva RaoPKurumurthyCVeeraswamyBSanthosh KumarGPoornachandraYGanesh KumarCet alSynthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activityEur J Med Chem2014801849110.1016/j.ejmech.2014.04.052Search in Google Scholar

Shrestha JP, Chang CW. Safe and easy route for the synthesis of 1,3-dimethyl-1,2,3-triazolium salt and investigation of its anticancer activities. Bioorg Med Chem Lett 2013; 23: 5909-11.ShresthaJPChangCWSafe and easy route for the synthesis of 1,3-dimethyl-1,2,3-triazolium salt and investigation of its anticancer activitiesBioorg Med Chem Lett20132359091110.1016/j.bmcl.2013.08.078Search in Google Scholar

Bolje A, Urankar D, Kosmrlj J. Synthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. Eur J Org Chem 2014; 36: 8167-81.BoljeAUrankarDKosmrljJSynthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine ringsEur J Org Chem20143681678110.1002/ejoc.201403100Search in Google Scholar

Bolje A, Kosmrlj J. A selective approach to pyridine appended 1,2,3-triazolium salts. Org Lett 2013; 15: 5084-7.BoljeAKosmrljJA selective approach to pyridine appended 1,2,3-triazolium saltsOrg Lett2013155084710.1021/ol4024584Search in Google Scholar

Osmak M, Bizjak L, Jernej B, Kapitanovic S. Characterization of carboplatinresistant sublines derived from human larynx carcinoma cells. Mutat Res 1995; 347: 141-50.OsmakMBizjakLJernejBKapitanovicSCharacterization of carboplatinresistant sublines derived from human larynx carcinoma cellsMutat Res19953471415010.1016/0165-7992(95)00033-XSearch in Google Scholar

Rak S, Cimbora-Zovko T, Gajski G, Dubravcic K, Domijan AM, Delas I, et al. Carboplatin resistant human laryngeal carcinoma cells are cross resistant to curcumin due to reduced curcumin accumulation. Toxicol In Vitro 2013; 27: 523-32.RakSCimbora-ZovkoTGajskiGDubravcicKDomijanAMDelasIet alCarboplatin resistant human laryngeal carcinoma cells are cross resistant to curcumin due to reduced curcumin accumulationToxicol In Vitro2013275233210.1016/j.tiv.2012.11.00323147641Search in Google Scholar

Brozovic A, Vukovic L, Polancac DS, Arany I, Koberle B, Fritz G, et al. Endoplasmic reticulum stress is involved in the response of human laryngeal carcinoma cells to carboplatin but is absent in carboplatin-resistant cells. PLoS One 2013; 8: e76397.BrozovicAVukovicLPolancacDSAranyIKoberleBFritzGet alEndoplasmic reticulum stress is involved in the response of human laryngeal carcinoma cells to carboplatin but is absent in carboplatin-resistant cellsPLoS One20138e7639710.1371/journal.pone.0076397Search in Google Scholar

Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res 1990; 18: 131-6.MickischGFajtaSKeilhauerGSchlickETschadaRAlkenPChemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT)Urol Res199018131610.1007/BF00302474Search in Google Scholar

Piantanida I, Palm BS, Cudic P, Zinic M, Schneider HJ. Interactions of acyclic and cyclic bis-phenanthridinium derivatives with ss- and ds-polynucleotides. Tetrahedron 2004; 60: 6225-31.PiantanidaIPalmBSCudicPZinicMSchneiderHJInteractions of acyclic and cyclic bis-phenanthridinium derivatives with ss- and ds-polynucleotidesTetrahedron20046062253110.1016/j.tet.2004.05.009Search in Google Scholar

Mergny JL, Lacroix L. Analysis of thermal melting curves. Oligonucleotides 2003; 13: 515-37.MergnyJLLacroixLAnalysis of thermal melting curvesOligonucleotides2003135153710.1089/154545703322860825Search in Google Scholar

Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen-peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biol Med 1989; 6: 593-7.AruomaOIHalliwellBHoeyBMButlerJThe antioxidant action of N-acetylcysteine: its reaction with hydrogen-peroxide, hydroxyl radical, superoxide, and hypochlorous acidFree Radical Biol Med19896593710.1016/0891-5849(89)90066-XSearch in Google Scholar

Mitchell JB, DeGraff W, Kaufman D, Krishna MC, Samuni A, Finkelstein E, et al. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch Biochem Biophys 1991; 289: 62-70.MitchellJBDeGraffWKaufmanDKrishnaMCSamuniAFinkelsteinEet alInhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempolArch Biochem Biophys1991289627010.1016/0003-9861(91)90442-LSearch in Google Scholar

Burja B, Cimbora-Zovko T, Tomic S, Jelusic T, Kocevar M, Polanc S, et al. Pyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studies. Bioorg Med Chem 2010; 18: 2375-87.BurjaBCimbora-ZovkoTTomicSJelusicTKocevarMPolancSet alPyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studiesBioorg Med Chem20101823758710.1016/j.bmc.2010.03.00620338766Search in Google Scholar

Cimbora-Zovko T, Brozovic A, Piantanida I, Fritz G, Virag A, Alic B, et al. Synthesis and biological evaluation of 4-nitro-substituted 1,3-diaryltriazenes as a novel class of potent antitumor agents. Eur J Med Chem 2011; 46: 2971-83.Cimbora-ZovkoTBrozovicAPiantanidaIFritzGViragAAlicBet alSynthesis and biological evaluation of 4-nitro-substituted 1,3-diaryltriazenes as a novel class of potent antitumor agentsEur J Med Chem20114629718310.1016/j.ejmech.2011.04.02421550697Search in Google Scholar

Bolje A, Hohloch S, Urankar D, Pevec A, Gazvoda M, Sarkar B, et al. Exploring the scope of pyridyl- and picolyl-functionalized 1,2,3-triazol-5-ylidenes in bidentate coordination to Ruthenium(II) cymene chloride complexes. Organometallics 2014; 33: 2588-98.BoljeAHohlochSUrankarDPevecAGazvodaMSarkarBet alExploring the scope of pyridyl- and picolyl-functionalized 1,2,3-triazol-5-ylidenes in bidentate coordination to Ruthenium(II) cymene chloride complexesOrganometallics20143325889810.1021/om500287tSearch in Google Scholar

Garraway LA, Janne PA. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discovery 2012; 2: 214-26.GarrawayLAJannePACircumventing cancer drug resistance in the era of personalized medicineCancer Discovery201222142610.1158/2159-8290.CD-12-001222585993Search in Google Scholar

Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013; 4:28.ZahreddineHBordenKLBMechanisms and insights into drug resistance in cancerFront Pharmacol201342810.3389/fphar.2013.00028Search in Google Scholar

Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007; 63: 12-31.StewartDJMechanisms of resistance to cisplatin and carboplatinCrit Rev Oncol Hematol200763123110.1016/j.critrevonc.2007.02.001Search in Google Scholar

Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat 2007; 10: 59-67.FojoTMultiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAsDrug Resist Updat200710596710.1016/j.drup.2007.02.002Search in Google Scholar

Heffeter P, Jungwirth U, Jakupec M, Hartinger C, Galanski M, Elbling L, et al. Resistance against novel anticancer metal compounds: differences and similarities. Drug Resist Updat 2008; 11: 1-16.HeffeterPJungwirthUJakupecMHartingerCGalanskiMElblingLet alResistance against novel anticancer metal compounds: differences and similaritiesDrug Resist Updat20081111610.1016/j.drup.2008.02.002Search in Google Scholar

Ambriovic-Ristov A, Osmak M. Integrin-mediated drug resistance. Curr Signal Transduct Ther 2006; 1: 227-37.Ambriovic-RistovAOsmakMIntegrin-mediated drug resistanceCurr Signal Transduct Ther200612273710.2174/157436206777012048Search in Google Scholar

Chenoweth DM, Dervan PB. Allosteric modulation of DNA by small molecules. Proc Natl Acad Scis US 2009; 106: 13175-9.ChenowethDMDervanPBAllosteric modulation of DNA by small moleculesProc Natl Acad Scis US200910613175910.1073/pnas.0906532106Search in Google Scholar

Zhao M, Ratmeyer L, Peloquin RG, Yao SJ, Kumar A, Spychala J, et al. Small changes in cationic substituents of diphenylfuran derivatives have major effects on the binding-affinity and the binding mode with RNA helical duplexes. Bioorg Med Chem 1995; 3: 785-94.ZhaoMRatmeyerLPeloquinRGYaoSJKumarASpychalaJet alSmall changes in cationic substituents of diphenylfuran derivatives have major effects on the binding-affinity and the binding mode with RNA helical duplexesBioorg Med Chem199537859410.1016/0968-0896(95)00057-NSearch in Google Scholar

Brozovic A, Stojanovic N, Ambriovic-Ristov A, Brozovic Krijan A, Polanc S, Osmak M. 3-Acetyl-bis(2-chloro-4-nitrophenyl)triazene is a potent antitumor agent that induces oxidative stress and independently activates the stress-activated protein kinase/c-Jun NH2-terminal kinase pathway. Anticancer Drugs 2014; 25: 289-95.BrozovicAStojanovicNAmbriovic-RistovABrozovic KrijanAPolancSOsmakM3-Acetyl-bis(2-chloro-4-nitrophenyl)triazene is a potent antitumor agent that induces oxidative stress and independently activates the stress-activated protein kinase/c-Jun NH2-terminal kinase pathwayAnticancer Drugs2014252899510.1097/CAD.000000000000006024322543Search in Google Scholar

Brozovic A, Ambriovic-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 2010; 40: 347-59.BrozovicAAmbriovic-RistovAOsmakMThe relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatinCrit Rev Toxicol2010403475910.3109/1040844100360183620163198Search in Google Scholar

Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, et al. Oxygen radicals and human disease. Ann Intern Med 1987; 107: 526-45.CrossCEHalliwellBBorishETPryorWAAmesBNSaulRLet alOxygen radicals and human diseaseAnn Intern Med19871075264510.7326/0003-4819-107-4-5263307585Search in Google Scholar

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84.ValkoMLeibfritzDMoncolJCroninMTMazurMTelserJFree radicals and antioxidants in normal physiological functions and human diseaseInt J Biochem Cell Biol200739448410.1016/j.biocel.2006.07.00116978905Search in Google Scholar

Vousden KH, Ryan KM: p53 and metabolism. Nat Rev Cancer 2009; 9:691-700.VousdenKHRyan KM: p53 and metabolismNat Rev Cancer2009969170010.1038/nrc271519759539Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology