1. bookVolume 62 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia

Published Online: 09 Jun 2017
Volume & Issue: Volume 62 (2017) - Issue 2 (June 2017)
Page range: 183 - 186
Received: 14 Jul 2016
Accepted: 15 Dec 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The paper presents the investigation of magnetic nanoparticles (MNPs) dedicated to hyperthermia application. The crystal structure and size distributions have been determined by means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy together with calorimetric experiments. The Mössbauer spectroscopic study of MNPs revealed the existence of a superparamagnetic phase. The relative contribution of the relaxing component to the total spectrum at room temperature was about 10%. The heating effect of these MNPs under alternating magnetic field was examined. The temperature increase has reached 5°C in 10 min. The preliminary temperature rise suggests that the investigated materials are applicable for hyperthermia.

Keywords

1. Berry, C. C., & Curtis, A. S. G. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys., 36(13), 198-206.10.1088/0022-3727/36/13/203Search in Google Scholar

2. Subramanian, M., Miaskowski, A., Pearce, G., & Dobson, J. (2016). A coil system for real-time magnetic fluid hyperthermia microscopy studies. Int. J. Hyperthermia, 32(2), 112-120.10.3109/02656736.2015.1104732Search in Google Scholar

3. Chudzik, B., Miaskowski, A., Surowiec, Z., Czernel, G., Duluk, T., Marczuk, M., & Gagoś, M. (2016). Effectiveness of magnetic fl uid hyperthermia against Candida albicans cells. Int. J. Hyperthermia, 32(8), 842-857. http://dx.doi.org/10.1080/02656736.2016.1212277.10.1080/02656736.2016.1212277Search in Google Scholar

4. Wang, Z., & Cuschieri, A. (2013). Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int. J. Mol. Sci., 14, 9111-9125. DOI: 10.3390/ijms14059111.10.3390/ijms14059111Search in Google Scholar

5. Tieyu, C., Xing, P., & Henry, D. (2016). Construction of site-specifi c core-shell structured nanocomposite for pH-controlled drug delivery. J. Porous Mater., 23, 987-995. DOI: 10.1007/s10934-016-0156-5.10.1007/s10934-016-0156-5Search in Google Scholar

6. Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldöfner, N., Scholz, R., Deger, S., Wust, P., Loening, S. A., & Jordan, A. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperthermia, 21, 637-647. DOI: 10.1080/02656730500158360.10.1080/02656730500158360Search in Google Scholar

7. Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys., 109, 083921-1-083921-17. DOI: 10.1063/1.3551582.10.1063/1.3551582Search in Google Scholar

8. Liquids Research Limited. (2011). Available from http://liquidsresearch.com.Search in Google Scholar

9. MagneThermTM systems. Available from http://www.nanotherics.com.Search in Google Scholar

10. Wildeboer, R. R., Southern, P., & Pankhurs, Q. A. 2014). On the reliable measurement of specific bsorption rates and intrinsic loss parameters in magnetic perthermia materials. J. Phys. D-Appl. Phys., 47, 495003. DOI: 10.1088/0022-3727/47/49/495003.10.1088/0022-3727/47/49/495003Search in Google Scholar

11. Calero, M., Chiappi, M., Lazaro-Carrillo, A., Rodríguez, M. J., Chichón, F. J., Crosbie-Staunton, K., Prina-Mello, A., Volkov, Y., Villanueva, A., & Carrascosa, J. L. (2015). Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnol., 13, 16. DOI: 10.1186/s12951-015-0073-9.10.1186/s12951-015-0073-9Search in Google Scholar

12. Williamson, G. K., & Hall, W. H. (1952). X-ray line broadening from fi led aluminium and wolfram. Acta Metallurgica, 1, 22-31. DOI: 10.1016/0001-6160(53)90006-6.10.1016/0001-6160(53)90006-6Search in Google Scholar

13. Kalska-Szostko, B., Zubowska, M., & Satuła, D. (2006). Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A, 109, 365-369.10.12693/APhysPolA.109.365Search in Google Scholar

14. Mørup, S., Hansen, M. F., & Frandsen, C. (2010). Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1, 182-190. DOI: 10.3762/bjnano.1.22.10.3762/bjnano.1.22304591221977409Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo