1. bookVolume 62 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution

Published Online: 09 Jun 2017
Volume & Issue: Volume 62 (2017) - Issue 2 (June 2017)
Page range: 177 - 181
Received: 26 Jun 2016
Accepted: 26 Jun 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM) and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis. According to the X-ray powder diffraction (XRD) measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.

Keywords

1. Scott, J. F. (2007). Data storage: Multiferroic memories. Nat. Mater., 6, 256-257. DOI: 10.1038/nmat1868.10.1038/nmat186817351613Search in Google Scholar

2. Paik, H., Hwang, H., No, K., Kwon, S., & Cann, D. P. (2007). Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)O3 solid solution ceramics. Appl. Phys. Lett., 90, 042908. DOI: 10.1063/1.2434182.10.1063/1.2434182Search in Google Scholar

3. Yuan, G. L., Or, S. W., Liu, J. M., & Liu, Z. G. (2006). Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett., 89, 052905. DOI: 10.1063/1.2266992.10.1063/1.2266992Search in Google Scholar

4. Zhang, S. T., Zhang, Y., Lu, M. H., Du, C. L., Chen, Y. F., Liu, Z. G., Zhu, Y. Y., Ming, N. B., & Pan, X. Q. (2006). Substitution-induced phase transition and enhanced multiferroic properties of BiLaFeO ceramics. Appl. Phys. Lett., 88, 162901. DOI: 10.1063/1.2195927.10.1063/1.2195927Search in Google Scholar

5. Yang, Y., Liu, J. M., Huang, H. B., Zuo, W. Q., Bao, P., & Liu, Z. G. (2004). Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys. Rev. B, 70, 132101-132105. DOI: 10.1103/PhysRevB.70.132101.10.1103/PhysRevB.70.132101Search in Google Scholar

6. Kulawik, J., & Szwagierczak, D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc., 27, 2281-2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.10.1016/j.jeurceramsoc.2006.07.010Search in Google Scholar

7. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., & Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin fi lm heterostructures. Science, 299, 1719-1722. DOI: 10.1126/science.1080615.10.1126/science.108061512637741Search in Google Scholar

8. Lampis, N., Sciau, P., & Lehmann, A. G. (2000). Rietveld refi nements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3. J. Phys.-Condens. Matter, 12(11), 2367-2378. DOI: 10.1088/0953-8984/12/11/303.10.1088/0953-8984/12/11/303Search in Google Scholar

9. Nomura, S., Takabayashi, H., & Nakagawa, T. (1968). Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn. J. Appl. Phys., 7, 600-604. DOI: 10.1143/JJAP.7.600.10.1143/JJAP.7.600Search in Google Scholar

10. Falqui, A., Lampis, N., Geddo-Lehmann, A., & Pinna, G. (2005). Low temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. J. Phys. Chem., 109, 22967-22970. DOI: 10.1080/00150193.2014.923682.10.1080/00150193.2014.923682Search in Google Scholar

11. Martinez, R., Palai, R., Huhtinen, H., Liu, J., Scott, J. F., & Katiyar, R. S. (2010). Nanoscale ordering and multiferroic behavior in PbFe1/2Ta1/2O3. Phys. Rev. B, 82, 134104-1-134104-134110. DOI: 10.1103/PhysRevB.82.134104.10.1103/PhysRevB.82.134104Search in Google Scholar

12. Kubrin, S. P., Raevskaya, S. I., Kuropatkina, S. A., Raevski, I. P., & Sarychev, D. A. (2006). Dielectric and Mössbauer studies of B-cation order-disorder effect on the properties of Pb(Fe1/2Ta1/2)O3 relaxorferroelectric. Ferroelectrics, 340, 155-159. DOI: 10.1080/00150190600889239.10.1080/00150190600889239Search in Google Scholar

13. Gilleo, M. A. (1960). Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids, 13, 33-39. DOI: 10.1016/0022-3697(60)90124-4.10.1016/0022-3697(60)90124-4Search in Google Scholar

14. Kleemann, W., Shvartsman, V. V., Borisov, P., & Kania, A. (2010). Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett., 105, 257202-1-257202-4. DOI: 10.1103/PhysRevLett.105.257202.10.1103/PhysRevLett.105.257202Search in Google Scholar

15. Raevski, I. P., Kubrin, S. P., & Raevskaya, S. I. (2012). Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and fi rst principles calculations. Phys. Rev. B, 85, 224412-1-224412-5. DOI: 10.1103/Phys-RevB.85.224412.Search in Google Scholar

16. Laguta, V. V., Rosa, J., & Jastrabik, L. (2010). 93Nb NMR and Fe3+ EPR study of local magnetic properties of disordered magnetoelectric PbFe1/2Nb1/2O3. Mater. Res. Bull., 45, 1720-1727. DOI: 10.1016/j.materresbull.2010.06.060.10.1016/j.materresbull.2010.06.060Search in Google Scholar

17. Kulawik, J., & Szwagierczak, D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc., 27, 2281-2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.10.1016/j.jeurceramsoc.2006.07.010Search in Google Scholar

18. Wang, K. F., Liu, J. M., & Ren, Z. F. (2009). Multiferroicity. The coupling between magnetic and polarization. Adv. Phys., 58, 321-448. DOI: 10.1080/00018730902920554.10.1080/00018730902920554Search in Google Scholar

19. Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 192, 55-69. DOI: 10.1016/0921-4526(93)90108-I.10.1016/0921-4526(93)90108-ISearch in Google Scholar

20. Lu, J., Qiao, L. J., Fu, P. Z., & Wu, Y. C. (2011). Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth, 318, 936-941. DOI: 10.1016/j.jcrysgro.2010.10.181.10.1016/j.jcrysgro.2010.10.181Search in Google Scholar

21. Zachariasz, P., Stoch, A., Stoch, P., & Maurin, J. (2013). Hyperfi ne interactions in xBi0.95Dy0.05FeO3-(1-x)Pb(Fe2/3W1/3)O3 multiferroics. Nukleonika, 58(1), 53-56.Search in Google Scholar

22. Ivanov, S. A., Nordblad, P., Tellgren, R., Ericsson, T., & Rundlof, H. (2007). Structural, magnetic and Mössbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3. Solid State Sci., 9, 440-450. DOI: 10.1016/j.solidstatesciences.2007.03.018.10.1016/j.solidstatesciences.2007.03.018Search in Google Scholar

23. Blanco, M. C., Franco, D. G., Jalit, Y., Pannunzio Miner, E. V., Berndt, G., Paesano Jr., A., Nieva, G., & Carbonio, R. I. E. (2012). Synthesis, magnetic properties and Mössbauer spectroscopy for the pyrochlore family Bi2BB’O7 with B = Cr and Fe and B’ = Nb, Ta and Sb. Physica B, 407, 3078-3080. DOI: 10.1016/j.physb.2011.12.029.10.1016/j.physb.2011.12.029Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo