1. bookVolume 62 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Structural properties of Mn-substituted hercynite

Published Online: 09 Jun 2017
Volume & Issue: Volume 62 (2017) - Issue 2 (June 2017)
Page range: 95 - 100
Received: 03 Aug 2016
Accepted: 28 Oct 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

In this work spinel series with the general formula Fe1-xMnxAl2O4 (where x = 0, 0.3, 0.5 and 0.7) were synthesized and characterized with respect to their structure and microstructure. X-ray diffractometry (XRD) was used to identify the phase composition that revealed a single phase spinel material. Rietveld refinements of the XRD patterns were carried out in order to determine the lattice and oxygen positional parameters of the spinel compounds. Mössbauer effect measurements were performed at room temperature to determine the local chemical environment of the Fe ions, their valences, and degrees of spinels inversion. It was shown that an increase in the Mn content led to a decrease in the ratio of Fe2+ to Fe3+. The results obtained from Mössbauer spectroscopy (MS) were used to establish the chemical formulas of the synthesized spinels. Finally, the microstructure that was observed using scanning electron microscopy (SEM) showed a compact microstructure with an octahedral crystal habit.

Keywords

1. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. J. Am. Ceram. Soc., 82(12), 3279-3292. DOI: 10.1111/j.1151-2916.1999. tb02241.x.Search in Google Scholar

2. Amirkhanyan, L., Weissbach, T., Kortus, J., & Aneziris, Ch. G. (2013). On the possibility of hercynite formation in a solid state reaction at the Al2O3-iron interface: A density-functional theory study. Ceramics Int., 40(1, Pt. A), 257-262.Search in Google Scholar

3. Verwey, E. J. W., & Heilmann, E. L. (1947). Physical properties and cation arrangement of oxides with spinel structures. I. Cation arrangements in spinels. J. Chem. Phys., 15, 174-180. DOI: 10.1063/1.1746464.10.1063/1.1746464Search in Google Scholar

4. Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Leigh Review, 15, 33-81. http://preserve.lehigh.edu/cas-lehighreview-vol-15/5.Search in Google Scholar

5. Essene, E. J., & Peacor, D. R. (1983). Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi. Am. Miner., 68, 449-455.Search in Google Scholar

6. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751-767.10.1107/S0567739476001551Search in Google Scholar

7. Jastrzębska, I., Szczerba, J., & Stoch, P. (2017). Structural and microstructural study on the arc-plasma synthesized (APS) FeAl2O4-MgAl2O4 transitional refractory compound. High Temp. Mater. Process., 36(3), 299-304. DOI: 10.1515/htmp-2015-0252.10.1515/htmp-2015-0252Search in Google Scholar

8. Turnock, A. C., & Eugster, H. P. (1962). Fe-Al oxides: phase relations below 1000oC. J. Petrol., 3, 533-565.10.1093/petrology/3.3.533Search in Google Scholar

9. Turnock, A. C., & Lindsley, D. H. (1961). Fe-Al and Fe-Ti spinels and related oxides. In Year Book Carnegie Institution of Washington (vol. 60, pp. 152-157). Washington, D.C.: Carnegie Institution of Washington.Search in Google Scholar

10. Cremer, V. (1969). Die Mischkristallbildung im System Chromit-Magnetit-Hercynit zwischen 1000° und 500°C. Neues Jahrb. Mineral. Abh., 111(2), 184-205.Search in Google Scholar

11. Hålenius, U., Bosi, F., & Skokby, H. (2007). Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn2+ in oxygen-based mineral structures. Am. Miner., 92, 1225-1231.10.2138/am.2007.2481Search in Google Scholar

12. Fischer, W. A., & Hoffmann, A. (1956). Das Zustandsschaubild Eisenoxydul-Aluminiumoxyd. Arch. Eisenhuettenwes. 27(5), 343-346.10.1002/srin.195601412Search in Google Scholar

13. Jacob, K. T. (1981). Revision of thermodynamic data on MnO-Al2O3 melts. Can. Metall. Q., 20(1), 89-92. DOI: http://dx.doi.org/10.1179/cmq.1981.20.1.89.10.1179/cmq.1981.20.1.89Search in Google Scholar

14. Jastrzębska, I., Szczerba, J., Błachowski, A., & Stoch, P. (2017). Structure and microstructure evolution of hercynite spinel (Fe2+Al2O4) after annealing treatment. Eur. J. Mineral., 29(1), 63-72. DOI: 10.1127/ejm/2017/0029-2579.10.1127/ejm/2017/0029-2579Search in Google Scholar

15. Liu, G., Li, N., Yan, W., Tao, G., & Li, Y. (2012). Composition and structure of a composite spinel made from magnesia and hercynite. J. Ceram. Proc. Res., 13(4), 480-485.Search in Google Scholar

16. Gelbmann, G., Krischanitz, R., & Jörg, S. (2013). Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks. RHI Bull., 2, 10-12.Search in Google Scholar

17. Woodland, A. B., & Wood, B. J. (1990). The breakdown of hercynite at low fO2. Am. Miner., 75, 1342-1348.Search in Google Scholar

18. Bromiley, G. D., Gatta, G. D., & Stokes, T. (2015). Manganese incorporation in synthetic hercynite. Miner. Mag., 79(3), 635-647. DOI: 10.1180/minmag.2015.079.3.09.10.1180/minmag.2015.079.3.09Search in Google Scholar

19. Jastrzębska, I., & Szczerba, J. (2015). Non-conventional method of ceramic preparation - arc plasma synthesis (APS). In: X Krakow Conference of Young Scientists, KKMU Symposia and Conferences 10, 24-26 September 2015 (pp. 9-10). Krakow: AGH University of Science and Technology.Search in Google Scholar

20. Jastrzębska, I., Szczerba, J., Stoch, P., Błachowski, A., Ruebenbauer, K., Prorok, R., & Śnieżek, E. (2015). Crystal structure and Mössbauer study of FeAl2O4. Nukleonika, 60(1), 47-49. DOI: 10.1515/nuka-2015-0012.10.1515/nuka-2015-0012Search in Google Scholar

21. Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffr., 29, S13-S18. DOI: http://dx.doi.org/10.1017/S0885715614000840.10.1017/S0885715614000840Search in Google Scholar

22. Lutterotti, L., Matthies, S., & Wenk, H. R. (1999). MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld texture analysis and more. In: Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 9-13 August 1999, McGill University, Montreal, Canada (vol. 1, p. 1599). Ottawa: National Research Press.Search in Google Scholar

23. Prisecaru, I. (2009-2016). WMOSS4 Mössbauer Spectral Analysis Software. Available from http://www.wmoss.org.Search in Google Scholar

24. Hill, R. J. (1984). X-ray powder diffraction profi le refi nement of synthetic hercynite. Am. Miner., 69, 937-942.Search in Google Scholar

25. Lucchesi, S., Russo, U., & Della Giusta, A. (1997). Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. Eur. J. Mineral., 9, 31-42. DOI: 10.1127/ejm/9/1/0031.10.1127/ejm/9/1/0031Search in Google Scholar

26. O’Neill, H., Hugh, St. C., & Navrotsky, A. (1983). Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Miner., 68, 181-194.Search in Google Scholar

27. Dézsi, I., Szűcs, I., & Sváb, E. (2000). Mössbauer spectroscopy of spinels, J. Radiat. Nucl. Chem., 246(1), 15-19. DOI: 10.1023/A:1006796022996.10.1023/A:1006796022996Search in Google Scholar

28. Larsson, L., O’Nei ll, H., & Annersten, H. (1994). Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refi nements and Mössbauer spectroscopy. Eur. J. Mineral., 6, 39-51. DOI: 10.1127/ejm/6/1/0039.10.1127/ejm/6/1/0039Search in Google Scholar

29. Muan, A., & Gee, C. L. (1956). Phase equilibrium studies in the system iron oxide Al2O3 in air and at 1 atm O2 pressure. J. Am. Ceram. Soc., 39(6), 207-214. DOI: 10.1111/j.1151-2916.1959.tb13581.x.10.1111/j.1151-2916.1959.tb13581.xSearch in Google Scholar

30. Menegazzo, G., Carbonin, S., & Della Giusta, A. (1997). Cation and vacancy distribution in an artificially oxidized natural spinel. Mineral. Mag., 61, 411-421. DOI: 10.1180/minmag.1997.061.406.07.10.1180/minmag.1997.061.406.07Search in Google Scholar

31. Jagodzinski, H., & Saalfeld, H. (1958). Cation distribution and structural relations in Mg-Al spinels. Z. Kristallogr., 110(3), 197-218. DOI: 10.1524/zkri.1958.110.16.197. (in German).10.1524/zkri.1958.110.16.197Search in Google Scholar

32. Sheldon, R. I., Hartmann, T., Sickafus, K. E., Ibarra, A., Scott, B. L., Argyriou, D. N., Larson, A. C., & Von Dreel, R. B. (1999). Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO·xAl2O3. J. Am. Ceram. Soc., 82(12), 3293-3298. DOI: 10.1111/j.1151-2916.1999.tb02242.x.10.1111/j.1151-2916.1999.tb02242.xSearch in Google Scholar

33. Brice, J. C. (1986). Crystal growth processes. New York: Wiley. DOI: 10.1002/crat.2170220103.10.1002/crat.2170220103Search in Google Scholar

34. Roy, B. N. (1992). Crystal growth from melts. Applications to growth of groups 1 and 2 crystals. New York: Wiley. DOI: 10.1002/crat.2170270615.10.1002/crat.2170270615Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo