1. bookVolume 62 (2017): Issue 2 (June 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Features of the structural and magnetic properties of Pb(TixZr1–xO3)-NiFe1.98Co0.02O4 in the polarized state

Published Online: 09 Jun 2017
Volume & Issue: Volume 62 (2017) - Issue 2 (June 2017)
Page range: 91 - 94
Received: 29 Sep 2016
Accepted: 25 Nov 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Composites with a 90%Pb(TixZr1-xO3)-10%NiFe1.98Co0.02O4 composition have been synthesized. It has been established that the polarization of samples resulting from exposure to an electric field for 1 hour of 4 kV/mm in strength at a temperature of 400 K leads to crystal structure deformation. The compression of elementary crystal cells in some areas during polarization of the sample creates conditions suitable for the enhancement of magnetic exchange interactions. It has been found that the polarization process of such compositions leads to increases in specific magnetization and magnetic susceptibility. The analysis of Mössbauer spectra has shown that the polarization of the 90%Pb(TixZr1-xO3)-10%NiFe1.98Co0.02O4 composite leads to significant changes in the effective magnetic fields of iron subspectra in various positions.

Keywords

1. Noheda, B. (2002). Structure and high-piezoelectricity in lead oxide solid solutions. Current opinion. Solid State Mater. Sci., 6, 27-34.10.1016/S1359-0286(02)00015-3Search in Google Scholar

2. Reznichenko, L. A., Shilkina, L. A., Razumovskaya, O. N., Yaroslavtseva, E., Dudkina, S. I., Demchenko, O. A., Urasov, U. I., Esis, A. A., & Andrushina, I. N. (2009). Phase formation in near-morphotropic region of the PbZr1-xTixO3 system, structural defects, and electromechanical properties of the solid solutions. Phys. Solid State, 51(5), 1010-1018. DOI: 10.1134/S1063783409050205.10.1134/S1063783409050205Search in Google Scholar

3. Noheda, B., Gonzalo, A., & Hagen, M. (1999). Pulsed neutron diffraction study of Zr-rich PZT. J. Phys.-Condens. Matter, 11, 3959-3965.10.1088/0953-8984/11/20/302Search in Google Scholar

4. Hosseini, M., & Moosavi, S. J. (2000). The effect of microstructure on the pyroelectric properties of PZT ceramics. Ceramics Int., 26, 541-544.10.1016/S0272-8842(99)00092-9Search in Google Scholar

5. Kooti, M., & Naghdi, A. (2013). Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J. Mater. Sci. Technol., 29(1), 34-38. http://dx.doi.org/10.1016/j.jmst.2012.11.016.10.1016/j.jmst.2012.11.016Search in Google Scholar

6. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., & Muthamizhchelvan, C. (2013). Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloy. Compd., 563(25), 6-11. http://dx.doi.org/10.1016/j.jallcom.2013.02.077.10.1016/j.jallcom.2013.02.077Search in Google Scholar

7. Rancourt, D. G., & Ping, J. Y. (1991). Voigt-based methods for arbitrary-shape static hyperfi ne parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 58, 85-97. DOI: 10.1016/0168-583X(91)95681-3.10.1016/0168-583X(91)95681-3Search in Google Scholar

8. Oshtrakh, M. I., Ushakov, M. V., Senthilkumar, B., Kalai Selvan, R., Sanjeeviraja, C., Felner, I., & Semionkin, V. A. (2013). Study of NiFe2O4 nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Hyperfi ne Interact., 219, 7-12. DOI: 10.1007/s10751-012-0660-1.10.1007/s10751-012-0660-1Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo