1. bookVolume 62 (2017): Issue 1 (March 2017)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

A new concept of fusion neutron monitoring for PF-1000 device

Published Online: 04 Mar 2017
Volume & Issue: Volume 62 (2017) - Issue 1 (March 2017)
Page range: 17 - 22
Received: 25 Sep 2016
Accepted: 27 Oct 2016
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The power output of plasma experiments and fusion reactors is a crucial parameter. It is determined by neutron yields that are proportional and directly related to the fusion yield. The number of emitted neutrons should be known for safety reasons and for neutron budget management. The PF-1000 is the large plasma facility based on the plasma focus phenomenon. PF-1000 is operating in the Institute of Plasma Physics and Laser Microfusion in Warsaw. Neutron yield changes during subsequent pulses, which is immanent part of this type device and so it must be monitored in terms of neutron emission. The reference diagnostic intended for this purpose is the silver activation counter (SAC) used for many years. Our previous studies demonstrated the applicability of radio-yttrium for neutron yield measurements during the deuterium campaign on the PF-1000 facility. The obtained results were compared with data from silver activation counter and shown linear dependence but with some protuberances in local scale. Correlation between results for both neutron monitors was maintained. But the yttrium monitor registered the fast energy neutron that reached measurement apparatus directly from the plasma pinch. Based on the preliminary experiences, the yttrium monitor was designed to automatically register neutron-induced yttrium activity. The MCNP geometrical model of PF-1000 and yttrium monitor were both used for calculation of the activation coefficient for yttrium. The yttrium monitor has been established as the permanent diagnostic for monitoring fusion reactions in the PF-1000 device.

Keywords

1. Syme, D. B., Popovichev, S., Conroy, S., Lengar, I., Snoj, L., Sowden, C., Giacomelli, L., Hermon, G., Allan, P., Macheta, P., Plummer, D., Stephens, J., Batistoni, P., Prokopowicz, R., Jednorog, S., Abhangi, M. R., Makwana, R., & JET EFDA. (2014). Fusion yield measurements on JET and their calibration. Fusion Eng. Des., 89(11), 2766–2775.10.1016/j.fusengdes.2014.07.019Search in Google Scholar

2. Laszynska, E., Jednorog, S., Ziolkowski, A., Gierlik, M., & Rzadkiewicz, J. (2015). Determination of the emission rate for the 14 MeV neutron generator with the use of radio-yttrium. Nukleonika, 60(2), 319–322. DOI: 10.1515/nuka-2015-0040.10.1515/nuka-2015-0040Search in Google Scholar

3. Bertalot, L., Barnsley, R., Direz, M. F., Drevon, J. M., Encheva, A., Jakhar, S., Kashchuk, Y., Patel, K. M., Arumugam, A. P., Udintsev, V., Walker, C., & Walsh, M. (2012). Fusion neutron diagnostics on ITER tokamak. J. Instrum., 7, 1–18. DOI: 10.1088/1748-0221/7/04/C04012.10.1088/1748-0221/7/04/C04012Search in Google Scholar

4. Eriksson, J., Castegnetti, G., Conroy, S., Ericsson, G., Giacomelli, L., Hellesen, C., & JET-EFDA contributors. (2014). Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer. Rev. Sci. Instrum., 85(11), 11E106. DOI: 10.1063/1.4889907.10.1063/1.488990725430285Search in Google Scholar

5. Borio di Tigliole, A., Cammi, A., Chiesa, D., Clemenza, M., Manera, S., Nastasi, M., Pattavina, L., Ponciroli, R., Pozzi, S., Prata, M., Previtali, E., Salvini, A., & Sisti, M. (2014). TRIGA reactor absolute neutron flux measurement using activated isotopes. Prog. Nucl. Energy, 70, 249–255. DOI: 10.1016/j.pnucene.2013.10.001.10.1016/j.pnucene.2013.10.001Search in Google Scholar

6. Ellsworth, J. L., Falabella, S., Schmidt, A., & Tang, V. (2014). Ion beam and neutron output from a sub-kilo joule Dense Plasma Focus. AIP Conf. Proc., 1639(1), 27. http://doi.org/10.1063.1.4904769.10.1063/1.4904769Search in Google Scholar

7. Jednorog, S., Szydlowski, A., Bienkowska, B., & Prokopowicz, R. (2014). The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device. J. Radioanal. Nucl. Chem., 301(1), 23–31. DOI: 10.1007/s10967-014-3131-0.10.1007/s10967-014-3131-0451737426229218Search in Google Scholar

8. Ong, S. T., Chaudhary, K., Ali, J., & Lee, S. (2014). Numerical experiments on neutron yield and soft x-ray study of a ~100 kJ plasma focus using the current profile fitting technique. Plasma Phys. Control. Fusion, 56(7), 075001. DOI: 10.1088/0741-3335/56/7/075001.10.1088/0741-3335/56/7/075001Search in Google Scholar

9. Bhatia, C., Fallin, B., Gooden, M. E., Howell, C. R., Kelley, J. H., Tornow, W., Arnold, C. W., Bond, E. M., Bredeweg, T. A., Fowler, M. M., Moody, W. A., Rundberg, R. S., Rusev, G., Vieira, D. J., Wilhelmy, J. B., Becker, J. A., Macri, R., Ryan, C., Sheets, S. A., Stoyer, M. A., & Tonchev, A. P. (2014). Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip., 757, 7–19. DOI: 10.1016/j.nima.2014.03.022.10.1016/j.nima.2014.03.022Search in Google Scholar

10. Waugh, C. J., Rosenberg, M. J., Zylstra, A. B., Frenje, J. A., Séguin, F. H., Petrasso, R. D., Glebov, V. Y., Sangster, T. C., & Stoeckl, C. (2015). A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors. Rev. Sci. Instrum., 86(5), 053506. DOI: 10.1063/1.4919290.10.1063/1.491929026026524Search in Google Scholar

11. Roshan, M. V., Springham, S. V., Rawat, R. S., Lee, P., & Krishnan, M. (2010). Absolute measurements of fast neutrons using yttrium. Rev. Sci. Instrum., 81(8), 083506. DOI: 10.1063/1.3478020.10.1063/1.347802020815606Search in Google Scholar

12. National Nuclear Data Center, Brookhaven National Laboratory, based on ENSDF and the Nuclear Wallet Cards. (2016, June). Decay radiation search. Retrieved June 10, 2016, from http://www.nndc.bnl.gov/nudat2/indx_dec.jsp.Search in Google Scholar

13. Capote, R., Zolotarev, K. I., Pronyaev, V. G., Trkov, A., Zsolnay, E. M., & Nolthenius, H. K. (2014, October). International Reactor Dosimetry and Fusion File. Retrieved June 10, 2016, from https://www-nds.iaea.org/IRDFF/.Search in Google Scholar

14. Koning, A. J., Rochman, D., van der Marck, S. C., Kopecky, J., Sublet, J. Ch., Pomp, S., Sjostrand, H., Forrest, R., Bauge, E., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, J., Leeb, H., Plompen, A., Mills, R., & Hilaire, S. (2015, July). TENDL-2014: TALYS-based evaluated nuclear data library. Retrieved June 10, 2016, from ftp://ftp.nrg.eu/pub/www/talys/tendl2014.Search in Google Scholar

15. Jednorog, S., Szydlowski, A., Scholz, M., Paduch, M., & Bienkowska, B. (2012). Preliminary determination of angular distribution of neutrons emitted from PF-1000 facility by indium activation. Nukleonika, 57(4), 563–568.Search in Google Scholar

16. Jednorog, S., Paduch, M., Szewczak, K., & Laszynska, E. (2015). Radioindium and determination of neutron radial asymmetry for the PF-1000 plasma focus device. J. Radioanal. Nucl. Chem., 303(1), 941–947. DOI: 10.1007/s10967-014-3444-z.10.1007/s10967-014-3444-zSearch in Google Scholar

17. CANBERRA. (2016). Technical Advantages of ISOCS™/LabSOCS™. Retrieved June 10, 2016, from http://www.canberra.com/literature/isocs/application_notes/ISOCS-LabSOCS-App-Note-C39530.pdf.Search in Google Scholar

18. Jednorog, S., Polkowska-Motrenko, H., Szewczak, K., Bienkowska, B., Paduch, M., Prokopowicz, R., Ciupek, K., Chajduk, E., Samczynski, Z., Krajewski, P., & Laszynska, E. (2014). Neutron activation of PF-1000 device parts during long-term fusion research. J. Radioanal. Nucl. Chem., 303(1), 1009–1014. DOI: 10.1007/s10967-014-3522-2.10.1007/s10967-014-3522-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo