1. bookVolume 61 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Plasma characterization of the gas-puff target source dedicated for soft X-ray microscopy using SiC detectors

Published Online: 15 Jun 2016
Volume & Issue: Volume 61 (2016) - Issue 2 (June 2016)
Page range: 139 - 143
Received: 24 Sep 2015
Accepted: 01 Dec 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

An Nd:YAG pulsed laser was employed to irradiate a nitrogen gas-puff target. The interaction gives rise to the emission of soft X-ray (SXR) radiation in the ‘water window’ spectral range (λ= 2.3÷4.4 nm). This source was already successfully employed to perform the SXR microscopy. In this work, a Silicon Carbide (SiC) detector was used to characterize the nitrogen plasma emission in terms of gas-puff target parameters. The measurements show applicability of SiC detectors for SXR plasma characterization.

Keywords

1. Bertilson, M., Von Hofsten, O., Vogt, U., Holmberg, A., & Hertz, H. M. (2009). High-resolution computed tomography with a compact soft x-ray microscope. Opt. Express, 17(13), 11057-11065. DOI: 10.1364/ OE.17.011057.10.1364/OE.17.01105719550505Search in Google Scholar

2. Da Silva, L. B., Trebes, J. E., Balhorn, R., Mrowka, S., Anderson, E., Attwood, D. T., Barbee Jr, T. W., Brase, J., Corzett, M., & Gray, J. (1992). X-ray laser microscopy of rat sperm nuclei. Science, 258(5080), 269-271. DOI: 10.1126/science.1411525.10.1126/science.14115251411525Search in Google Scholar

3. Sarubbi, F., Nihtianov, S. N., Nanver, L. K., Scholtes, T. L. M., & Scholze, F. (2009). High performance silicon-based extreme ultraviolet (EUV) radiation detector for industrial application. In IEEE IECON’2009, 3-5 November 2009, Porto, Portugal (pp. 1877-1882). IEEE.Search in Google Scholar

4. Balkanski, M. R., & Wallis, F. (2000). Semiconductor physics and applications. Oxford, New York: Oxford University Press.Search in Google Scholar

5. Attwood, D. (1999). Soft x-rays and extreme ultraviolet radiation. Cambridge: Cambridge University Press.10.1017/CBO9781139164429Search in Google Scholar

6. Torrisi, L., Sciuto, A., Calcagno, L., Musumeci, P., Mazzillo, M., Ceccio, G., & Cannavò, A. (2015). Laser-plasma X-ray detection by using fast 4H-SiC interdigit and ion collector detectors. J. Instrum., 10, P07009. DOI: 10.1088/1748-0221/10/07/P07009.10.1088/1748-0221/10/07/P07009Search in Google Scholar

7. Cannavò, A., Torrisi, L., & Calcagno, L. (2016). SiC detector characterization for radiation emitted by laser-generated plasmas. J. Instrum. (submitted). 10.1088/1748-0221/11/05/C05008Search in Google Scholar

8. Mazzillo, M., Condorelli, G., Castagna, M. E., Catania, G., Sciuto, A., Roccaforte, F., & Raineri, V. (2009). Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection. IEEE Photonic Tech. L, 21(23), 1782-1784. DOI: 10.1109/ LPT.2009.2033713.10.1109/LPT.2009.2033713Search in Google Scholar

9. Sciuto, A., Roccaforte, F., & Raineri, V. (2008). Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors. Appl. Phys. Lett., 92, 093505. DOI: 10.1063/1.2891048.10.1063/1.2891048Search in Google Scholar

10. Lees, J. E., Barnett, A. M., Bassforda, D. J., & Mazzillo, M. (2012). X-ray and electron response of 4H-SiC vertical interdigitated Schottky photodiodes. J. Instrum., 7, P11024. DOI: 10.1088/1748-0221/7/11/P11024.10.1088/1748-0221/7/11/P11024Search in Google Scholar

11. Laska, L., Krasa, J., Pfeifer, M., & Rohlena, K. (2002). Angular distribution of ions emitted from Nd:YAG laser-produced plasma. Rev. Sci. Instrum., 73(2), 654-656. DOI: 10.1063/1.1430037.10.1063/1.1430037Search in Google Scholar

12. Fiedorowicz, H., Bartnik, A., Jarocki, R., Kostecki, J., Krzywiński, J., Mikołajczyk, J., Rakowski, R., Szczurek, A., & Szczurek, M. (2005). Compact laser plasma EUV source based on a gas puff target for metrology applications. J. Alloy. Compd., 401(1/2), 99-103. DOI: 10.1016/j.jallcom.2005.02.069.10.1016/j.jallcom.2005.02.069Search in Google Scholar

13. Wachulak, P., Bartnik, A., Fiedorowicz, H., Rudawski, P., Jarocki, R., Kostecki, J., & Szczurek, M. (2010). “Water window” compact, table-top laser plasma soft X-ray sources based on a gas puff target. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268(10), 1692-1700. DOI: 10.1016/j. nimb.2010.02.002.Search in Google Scholar

14. Fiedorowicz, H., Bartnik, A., Jarocki, R., Rakowski, R., & Szczurek, M. (2000). Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Appl. Phys. B, 70(2), 305-308. DOI: 10.1007/s003400050050.10.1007/s003400050050Search in Google Scholar

15. Wachulak, P., Bartnik, A., Fiedorowicz, H., Feigl, T., Jarocki, R., Kostecki, J., Rakowski, R., Rudawski, P., Sawicka, M., Szczurek, M., Szczurek, A., & Zawadzki, Z. (2010). A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength. Appl. Phys. B, 100(3), 461-469. DOI: 10.1007/s00340-010-4076-9.10.1007/s00340-010-4076-9Search in Google Scholar

16. Wachulak, P., Bartnik, A., Skorupka, M., Kostecki, J., Jarocki, R., Szczurek, M., Wegrzynski, L., Fok, T., & Fiedorowicz, H. (2013). Sub 1-μm resolution water- -window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Appl. Phys. B, 111(2), 239-247. DOI: 10.1007/ s00340-012-5324-y.10.1007/s00340-012-5324-ySearch in Google Scholar

17. Wachulak, P., Torrisi, A., Bartnik, A., Adjei, D., Kostecki, J., Wegrzynski, L., Jarocki, R., Szczurek, M., & Fiedorowicz, H. (2015). Desktop water window microscope using a double stream gas puff target source. Appl. Phys. B, 118(4), 573-578. DOI: 10.1007/s00340-015-6044-x.10.1007/s00340-015-6044-xSearch in Google Scholar

18. Wachulak, P., Torrisi, A., Nawaz, M. F., Bartnik, A., Adjei, D., Vondrová, Š., Turňová, J., Jančarek, A., Limpouch, J., Vrbová, M., & Fiedorowicz, H. (2015). A compact “water-window” microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc. Microanal., 21(5), 1214-1223. DOI: 10.1017/S1431927615014750.10.1017/S143192761501475026373378Search in Google Scholar

19. Nalwa, H. S. (1999). Handbook of nanostructured materials and nanotechnology. Academic Press.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo