Cite

1. Bertilson, M., Von Hofsten, O., Vogt, U., Holmberg, A., & Hertz, H. M. (2009). High-resolution computed tomography with a compact soft x-ray microscope. Opt. Express, 17(13), 11057-11065. DOI: 10.1364/ OE.17.011057.10.1364/OE.17.01105719550505Search in Google Scholar

2. Da Silva, L. B., Trebes, J. E., Balhorn, R., Mrowka, S., Anderson, E., Attwood, D. T., Barbee Jr, T. W., Brase, J., Corzett, M., & Gray, J. (1992). X-ray laser microscopy of rat sperm nuclei. Science, 258(5080), 269-271. DOI: 10.1126/science.1411525.10.1126/science.14115251411525Search in Google Scholar

3. Sarubbi, F., Nihtianov, S. N., Nanver, L. K., Scholtes, T. L. M., & Scholze, F. (2009). High performance silicon-based extreme ultraviolet (EUV) radiation detector for industrial application. In IEEE IECON’2009, 3-5 November 2009, Porto, Portugal (pp. 1877-1882). IEEE.Search in Google Scholar

4. Balkanski, M. R., & Wallis, F. (2000). Semiconductor physics and applications. Oxford, New York: Oxford University Press.Search in Google Scholar

5. Attwood, D. (1999). Soft x-rays and extreme ultraviolet radiation. Cambridge: Cambridge University Press.10.1017/CBO9781139164429Search in Google Scholar

6. Torrisi, L., Sciuto, A., Calcagno, L., Musumeci, P., Mazzillo, M., Ceccio, G., & Cannavò, A. (2015). Laser-plasma X-ray detection by using fast 4H-SiC interdigit and ion collector detectors. J. Instrum., 10, P07009. DOI: 10.1088/1748-0221/10/07/P07009.10.1088/1748-0221/10/07/P07009Search in Google Scholar

7. Cannavò, A., Torrisi, L., & Calcagno, L. (2016). SiC detector characterization for radiation emitted by laser-generated plasmas. J. Instrum. (submitted). 10.1088/1748-0221/11/05/C05008Search in Google Scholar

8. Mazzillo, M., Condorelli, G., Castagna, M. E., Catania, G., Sciuto, A., Roccaforte, F., & Raineri, V. (2009). Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection. IEEE Photonic Tech. L, 21(23), 1782-1784. DOI: 10.1109/ LPT.2009.2033713.10.1109/LPT.2009.2033713Search in Google Scholar

9. Sciuto, A., Roccaforte, F., & Raineri, V. (2008). Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors. Appl. Phys. Lett., 92, 093505. DOI: 10.1063/1.2891048.10.1063/1.2891048Search in Google Scholar

10. Lees, J. E., Barnett, A. M., Bassforda, D. J., & Mazzillo, M. (2012). X-ray and electron response of 4H-SiC vertical interdigitated Schottky photodiodes. J. Instrum., 7, P11024. DOI: 10.1088/1748-0221/7/11/P11024.10.1088/1748-0221/7/11/P11024Search in Google Scholar

11. Laska, L., Krasa, J., Pfeifer, M., & Rohlena, K. (2002). Angular distribution of ions emitted from Nd:YAG laser-produced plasma. Rev. Sci. Instrum., 73(2), 654-656. DOI: 10.1063/1.1430037.10.1063/1.1430037Search in Google Scholar

12. Fiedorowicz, H., Bartnik, A., Jarocki, R., Kostecki, J., Krzywiński, J., Mikołajczyk, J., Rakowski, R., Szczurek, A., & Szczurek, M. (2005). Compact laser plasma EUV source based on a gas puff target for metrology applications. J. Alloy. Compd., 401(1/2), 99-103. DOI: 10.1016/j.jallcom.2005.02.069.10.1016/j.jallcom.2005.02.069Search in Google Scholar

13. Wachulak, P., Bartnik, A., Fiedorowicz, H., Rudawski, P., Jarocki, R., Kostecki, J., & Szczurek, M. (2010). “Water window” compact, table-top laser plasma soft X-ray sources based on a gas puff target. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268(10), 1692-1700. DOI: 10.1016/j. nimb.2010.02.002.Search in Google Scholar

14. Fiedorowicz, H., Bartnik, A., Jarocki, R., Rakowski, R., & Szczurek, M. (2000). Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Appl. Phys. B, 70(2), 305-308. DOI: 10.1007/s003400050050.10.1007/s003400050050Search in Google Scholar

15. Wachulak, P., Bartnik, A., Fiedorowicz, H., Feigl, T., Jarocki, R., Kostecki, J., Rakowski, R., Rudawski, P., Sawicka, M., Szczurek, M., Szczurek, A., & Zawadzki, Z. (2010). A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength. Appl. Phys. B, 100(3), 461-469. DOI: 10.1007/s00340-010-4076-9.10.1007/s00340-010-4076-9Search in Google Scholar

16. Wachulak, P., Bartnik, A., Skorupka, M., Kostecki, J., Jarocki, R., Szczurek, M., Wegrzynski, L., Fok, T., & Fiedorowicz, H. (2013). Sub 1-μm resolution water- -window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Appl. Phys. B, 111(2), 239-247. DOI: 10.1007/ s00340-012-5324-y.10.1007/s00340-012-5324-ySearch in Google Scholar

17. Wachulak, P., Torrisi, A., Bartnik, A., Adjei, D., Kostecki, J., Wegrzynski, L., Jarocki, R., Szczurek, M., & Fiedorowicz, H. (2015). Desktop water window microscope using a double stream gas puff target source. Appl. Phys. B, 118(4), 573-578. DOI: 10.1007/s00340-015-6044-x.10.1007/s00340-015-6044-xSearch in Google Scholar

18. Wachulak, P., Torrisi, A., Nawaz, M. F., Bartnik, A., Adjei, D., Vondrová, Š., Turňová, J., Jančarek, A., Limpouch, J., Vrbová, M., & Fiedorowicz, H. (2015). A compact “water-window” microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc. Microanal., 21(5), 1214-1223. DOI: 10.1017/S1431927615014750.10.1017/S143192761501475026373378Search in Google Scholar

19. Nalwa, H. S. (1999). Handbook of nanostructured materials and nanotechnology. Academic Press.Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other