1. bookVolume 61 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

Published Online: 17 Mar 2016
Volume & Issue: Volume 61 (2016) - Issue 1 (March 2016)
Page range: 23 - 28
Received: 27 Aug 2014
Accepted: 07 Jul 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland). The measurements of H*(10) were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II) and NM2 FHT 192 gamma probe and with stationary dosimetric system.

Keywords

1. National Association for Proton Therapy. (2014). Retrieved August 20, 2014, from http://www.proton-therapy.org/facts.htm.Search in Google Scholar

2. Fowler, J. F. (2003). What can we expect from dose escalation using proton beams. Clin. Oncol., 15(1), S10–S15. DOI: 10.1053/clon.2002.0182.10.1053/clon.2002.0182Search in Google Scholar

3. Xu, X. G., Bednarz, B., & Paganetti, H. (2008). A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol., 53, 193–241. DOI: 10.1088/0031-9155/53/13/R01.10.1088/0031-9155/53/13/R01Search in Google Scholar

4. Chung, C. S., Keating, N., Yock, T., & Tarbell, N. (2008). Comparative analysis of second malignancy risk in patients treated with proton therapy versus conventional photon therapy. Int. J. Radiat. Oncol. Biol. Phys., 72(1), S8. DOI: 10.1016/j.ijrobp.2008.06.785.10.1016/j.ijrobp.2008.06.785Search in Google Scholar

5. Komaki, R., Sejpal, S., & Wei, X. (2008). Reduction of bone marrow suppression for patients with stage III NSCLC treated by proton and chemotherapy compared with IMRT and chemotherapy. Particle Therapy Cooperative Group 47, O10:14.Search in Google Scholar

6. Mayahara, H., Murakami, M., Kagawa, K., Kawaguchi, A., Oda, Y., Miyawaki, D., Sasaki, R., Sugimura, K., & Hishikawa, Y. (2007). Acute morbidity of proton therapy for prostate cancer: the Hyogo Ion Beam Medical Center experience. Int. J. Radiat. Oncol. Biol. Phys., 69(2), 434–443. DOI: 10.1016/j.ijrobp.2007.03.009.10.1016/j.ijrobp.2007.03.009Search in Google Scholar

7. Steneker, M., Lomax, A., & Schneider, U. (2006). Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiother. Oncol., 80(2), 263–267. DOI: 10.1016/j.radonc.2006.07.025.10.1016/j.radonc.2006.07.025Search in Google Scholar

8. Lee, C. T., Bilton, S. D., Famiglietti, R. M., Riley, B. A., Mahajan, A., Chang, E. L., Maor, M. H., Woo, S. Y., Cox, J. D., & Smith, A. R. (2005). Treatment planning with protons for pediatric retinoblasta, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys., 63(2), 362–372.10.1016/j.ijrobp.2005.01.060Search in Google Scholar

9. Miralbell, R., Lomax, A., Cella, L., & Scheider, U. (2002). Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys., 54(3), 824–829. DOI: 10.1016/S0360-3016(02)02982-6.10.1016/S0360-3016(02)02982-6Search in Google Scholar

10. Michalec, B., Swakoń, J., Sowa, U., Ptaszkiewicz, M., Cywicka-Jakiel, T., & Olko, P. (2010). Proton radiotherapy facility for ocular tumors at the IFJ PAN in Krakow Poland. Appl. Radiat. Isot., 68(4/5), 738–742. DOI: 10.1016/j.apradiso.2009.11.001.10.1016/j.apradiso.2009.11.001Search in Google Scholar

11. Swakon, J., Olko, P., Adamczyk, D., Cywicka-Jakiel, T., Dabrowska, J., Dulny, B., Grzanka, L., Horwacik, T., Kajdrowicz, T., Michalec, B., Nowak, T., Ptaszkiewicz, M., Sowa, U., Stolarczyk, L., & Waligorski, M. P. R. (2010). Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow. Radiat. Meas., 45(10), 1469–1471. DOI: 10.1016/j.radmeas.2010.06.020.10.1016/j.radmeas.2010.06.020Search in Google Scholar

12. The Bronowice Cyclotron Centre, IFJ PAN. (2014). Retrieved August 20, 2014, from http://www.ifj.edu.pl/ccb/.Search in Google Scholar

13. Brenner, D. J., & Hall, E. J. (2008). Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol., 86, 165–170. DOI: 10.1016/j.radonc.2007.Search in Google Scholar

14. Agosteo, S., Birattari, C., Caravaggio, M., Silari, M., & Tosi, G. (1998). Secondary neutron and photon dose in proton therapy. Radiother. Oncol., 48, 293–305. DOI: 10.1016/S0167-8140(98)00049-8.10.1016/S0167-8140(98)00049-8Search in Google Scholar

15. Wroe, A., Rosenfeld, A., & Schulte, R. (2007). Out-of-field dose equivalents delivered by proton therapy of prostate cancer. Med. Phys., 34, 3449–3456.10.1118/1.2759839Search in Google Scholar

16. Newhauser, W. D., Burns, J., & Smith, A. R. (2002). Dosimetry for ocular proton beam therapy at the Harvard Cyclotron Laboratory based on the ICRU Report 59. Med. Phys., 29, 1953–1961.10.1118/1.1487425Search in Google Scholar

17. Yan, X., Titt, U., Koehler, A. M., & Newhauser, W. D. (2002). Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 476(1), 429–434. DOI: 10.1016/S0168-9002(01)01483-8.10.1016/S0168-9002(01)01483-8Search in Google Scholar

18. International Commission on Radiation Units and Measurements. (1993). Quantities and units in radiation protection dosimetry. Bethesda, MD: ICRU. (ICRU Report 51).Search in Google Scholar

19. International Commission on Radiation Units and Measurements. (2001). Determination of operational dose equivalent quantities for neutrons. ICRU Report 66, Journal of the ICRU, 1(2). Ashford, UK: Nuclear Technology Publishing.Search in Google Scholar

20. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation. Otwock-Świerk: Institute of Atomic Energy. (IAE-20/A).Search in Google Scholar

21. Zielczynski, M., & Golnik, N. (1994). Recombination index of radiation quality – measuring and applications. Radiat. Prot. Dosim., 52, 419–422.10.1093/rpd/52.1-4.419Search in Google Scholar

22. Zielczynski, M., Golnik, N., & Rusinowski, Z. (1996). A computer controlled ambient dose equivalent meter based on a recombination chamber. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 370, 563–567. DOI: 10.1016/0168-9002(95)01013-0.10.1016/0168-9002(95)01013-0Search in Google Scholar

23. Golnik, N., Brede, H. J., & Guldbakke, S. (1997). Response of REM-2 recombination chamber to H*(10) of monoenergetic neutrons. Radiat. Prot. Dosim., 74, 139–144.10.1093/oxfordjournals.rpd.a032189Search in Google Scholar

24. Zielczyński, M., Golnik, N., & Gryziński, M. A. (2008). Applications of recombination chambers in the dosimetry of high energy radiation fields. Nukleonika, 53(Suppl. 1), S45–S52.Search in Google Scholar

25. Caresana, M., Denker, A., Esposito, A., Ferrarini, M., Golnik, N., Hohmann, E., Leuschner, A., Luszik-Bhadra, M., Manessi, G., Mayer, S., Ott, K., Röhrich, J., Silari, M., Trompier, F., Volnhals, M., & Wielunski, M. (2014). Intercomparison of radiation protection instrumentation in a pulsed neutron field. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 203–213. DOI: 10.1016/j.nima.2013.11.073.10.1016/j.nima.2013.11.073Search in Google Scholar

26. Zielczyński, M., Golnik, N., & Gryziński, M. A. (2007). A comparison of different recombination methods in mixed radiation fields at high energy accelerators. Radiat. Prot. Dosim., 126(1/4), 248–252. DOI: 10.1093/rpd/ncm051.10.1093/rpd/ncm05117575296Search in Google Scholar

27. Zielczyński, M., Golnik, N., Gryziński, M. A., & Tulik, P. (2010). The use of recombination chambers at radiation therapy facilities. Radiat. Meas., 45(10), 1472–1475. DOI: 10.1016/j.radmeas.2010.06.027.10.1016/j.radmeas.2010.06.027Search in Google Scholar

28. Jakubowska, E., Zielczyński, M., Golnik, N., Gryziński, M. A., & Krzemiński, Ł. (2014). A ring-shaped recombination chamber for hadron therapy dosimetry. Radiat. Prot. Dosim. DOI: 10.1093/rpd/nct355.10.1093/rpd/nct35524430949Search in Google Scholar

29. Olsher, R. H., Hsu, H.-H., Beverding, A., Kleck, J. H., Casson, W. H., Vasilik, D. G., & Devine, R. T. (2000). WENDI: An improved neutron REM meter. Health Phys., 79(2), pdf only.10.1097/00004032-200008000-0001010910387Search in Google Scholar

30. Olsher, R. H., & McLean, T. D. (2008). High-energy response of the PRESCILA and WENDI-II neutron rem meters. Radiat. Prot. Dosim., 130(4), 510–513. DOI: 10.1093/rpd/ncn092.10.1093/rpd/ncn09218381335Search in Google Scholar

31. Cywicka-Jakiel, T., Stolarczyk, L., Swakoń, J., Olko, P., & Waligórski, M. P. R. (2010). Individual patient shielding for a proton eye therapy facility. Radiat. Meas., 45(10), 1127–1129. DOI: 10.1016/j.radmeas.2010.05.018.10.1016/j.radmeas.2010.05.018Search in Google Scholar

32. European Commission Directorate-General for Energy and Transport. (2009). Directorate H – Nuclear Energy, Unit H.4 – Radiation Protection No. 160. Technical Recommendations for Monitoring Individuals Occupationally Exposed to External Radiation. Retrieved August 20, 2014, from http://ec.europa.eu/energy/nuclear/radiation_protection/doc/publication/160.pdf.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo