1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

The rapid interphase chromosome assay (RICA) implementation: comparison with other PCC methods

Published Online: 30 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 933 - 941
Received: 16 Jan 2015
Accepted: 10 Aug 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

A report is presented on the advantages of the rapid interphase chromosome assay (RICA) and the difficulties that may be met while implementing this method for application in biological dosimetry. The RICA test can be applied on unstimulated human lymphocytes; this is an advantage in comparison with the dicentric chromosomes or micronucleus tests. In the former two tests, stimulated lymphocytes are examined and hence, 48 h more are needed to obtain cells traversing the cell cycle. Due to the use of unstimulated nondividing cells, higher numbers of cells are available for RICA analysis than for dicentric chromosomes or micronuclei tests. Moreover, the method can be applied after exposure to ionizing radiation doses in excess of 5 Gy. Such doses cause a significant cell cycle delay or result in the loss of G2 phase and mitotic cells because of apoptosis. Therefore, the traditional biodosimetry based on the evaluation of the incidence of damage to chromosomes is very difficult to carry out. This is due to the lack of an adequate number of mitotic cells for analysis. RICA is free of this disadvantage. An automatic microscope can be used to retrieve cell images; automatic image analysis can also be used.

Keywords

1. Flegal, F. N., Devantier, Y., McNamee, J. P., & Wilkins, R. C. (2010). Quickscan dicentric chromosome analysis for radiation biodosimetry. Health Phys., 98, 276-281. DOI: 10.1097/HP.0b013e3181aba9c7.10.1097/HP.0b013e3181aba9c7Search in Google Scholar

2. Flegal, F. N., Devantier, Y., Marro, L., & Wilkins, R. C. (2012). Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Phys., 102, 143-153. DOI: 10.1097/HP.0b013e3182307758.10.1097/HP.0b013e3182307758Search in Google Scholar

3. Romm, H., Ainsbury, E., Barnard, S., Barrios, L., Barquinero, J. F., Beinke, C., Deperas, M., Gregoire, E., Koivistoinen, A., Lindholm, C., Moquet, J., Oestreicher, U., Puig, R., Rothkamm, K., Sommer, S., Thierens, H., Vandersickel, V., Vral, A., & Wojcik, A. (2014). Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. Health Phys., 106(6), 764-771. DOI: 10.1097/HP.0000000000000077.10.1097/HP.0000000000000077Search in Google Scholar

4. Thierens, H., Vral, A., Vandevoorde, C., Vandersickel, V., de Gelder, V., Romm, H., Oestreicher, U., Rothkamm, K., Barnard, S., Ainsbury, E., Sommer, S., Beinke, C., & Wojcik, A. (2014). Is a semi-automated approach indicated in the application of the automated micronucleus assay for triage purposes? Radiat. Prot. Dosim., 159(1/4), 87-94. DOI: 10.1093/rpd/ ncu130. Epub 2014 Apr 17.Search in Google Scholar

5. McNamee, J. P., Flegal, F. N., Greene, H. B., Marro, L., & Wilkins, R. C. (2009). Validation of the cytokinesis- -block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Radiat. Prot. Dosim., 135(4), 232-242. DOI: 10.1093/rpd/ncp119.10.1093/rpd/ncp119Search in Google Scholar

6. Roch-Lefèvre, S., Mandina, T., Voisin, P., Gaëtan, G., Mesa, J. E., Valente, M., Bonnesoeur, P., García, O., Voisin, P., & Roy, L. (2010). Quantifi cation of gamma- -H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat. Res., 174(2), 185-194. DOI: 10.1667/RR1775.1.10.1667/RR1775.1Search in Google Scholar

7. Barnard, S., Ainsbury, E. A., Al-Hafi dh, J., Hadjidekova, V., Hristova, R., Lindholm, C., Monteiro Gil, O., Moquet, J., Moreno, M., Rößler, U., Thierens, H., Vandevoorde, C., Vral, A., Wojewódzka, M., & Rothkamm, K. (2014). The fi rst gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat. Prot. Dosim., pii: ncu259. [Epub ahead of print] PubMed PMID: 25118318.Search in Google Scholar

8. Rothkamm, K., Barnard, S., Ainsbury, E. A., Al- Hafi dh, J., Barquinero, J. F., Lindholm, C., Moquet, J., Perälä, M., Roch-Lefèvre, S., Scherthan, H., Thierens, H., Vral, A., & Vandersickel, V. (2013). Manual versus automated γ-H2AX foci analysis across fi ve European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat. Res., 756(1/2), 170-173. DOI: 10.1016/j. mrgentox.2013.04.012.Search in Google Scholar

9. Prasanna, P. G., Escalada, N. D., & Blakely, W. F. (2000). Induction of premature chromosome condensation by a phosphatase inhibitor and a protein kinase in unstimulated human PBL: a simple and rapid technique to study chromosome aberrations using specifi c whole-chromosome DNA hybridization probes for biological dosimetry. Mutat. Res., 466(2), 131-141. PubMed PMID: 10727901.10.1016/S1383-5718(00)00011-5Search in Google Scholar

10. Prasanna, P. G., Hamel, C. J., Escalada, N. D., Duffy, K. L., & Blakely, W. F. (2002). Biological dosimetry using human interphase peripheral blood lymphocytes. Mil. Med., 167(Suppl. 2), 10-12. PubMed PMID: 11873484.10.1093/milmed/167.suppl_1.10Search in Google Scholar

11. Coco-Martin, J. M., & Begg, A. C. (1997). Detection of radiation-induced chromosome aberrations using fl uorescence in situ hybridization in drug-induced premature chromosome condensations of tumor cell lines with different radiosensitivities. Int. J. Radiat. Biol., 71(3), 265-273. PMID: 9134016.10.1080/0955300971441489134016Search in Google Scholar

12. Durante, M., George, K., & Yang, T. C. (1996). Biological dosimetry by interphase chromosome painting. Radiat. Res., 145(1), 53-60. PMID: 8532837.10.2307/3579195Search in Google Scholar

13. Gotoh, E., & Durante, M. (2006). Chromosome condensation outside of mitosis: Mechanisms and new tools. J. Cell Physiol., 209(2), 297-304. PMID: 16810672.10.1002/jcp.2072016810672Search in Google Scholar

14. Gotoh, E., & Tanno, Y. (2005). Simple biodosimetry method for cases of high-dose radiation exposure using the ratio of the longest/shortest length of Giemsa stained drug-induced prematurely condensed chromosomes (PCC). Int. J. Radiat. Biol., 81(5), 379-385. PMID: 16076753.10.1080/0955300050014766716076753Search in Google Scholar

15. Gotoh, E., Tanno, Y., & Takakura, K. (2005). Simple biodosimetry method for use in cases of high-dose radiation exposure that scores the chromosome number of Giemsa-stained drug-induced prematurely condensed chromosomes (PCC). Int. J. Radiat. Biol., 81(1), 33-40. PMID: 15962761.10.1080/0955300050009231915962761Search in Google Scholar

16. Lamadrid, A. I., García, O., Delbos, M., Voisin, P., & Roy, L. (2007). PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation. J. Radiat. Res., 48(1), 1-6. PMID: 17102580.10.1269/jrr.062517102580Search in Google Scholar

17. Prasanna, P. G. S., Muderhwa, J. M., Miller, A. C., Grace, M. B., Salter, C. A., & Blakely, W. F. (2004). Diagnostic biodosimetry response for radiation disasters: Current research and service activities at Armed Forces Radiobiology Research Institute, USA. Armed Forces Radiobiology Research Institute, USA. (RTO-MP-HFM-108).Search in Google Scholar

18. Wang, Z. Z., Li, W. J., Zhi, D. J., Jing, X. G., Wei, W., Gao, Q. X., & Liu, B. (2007). Biodosimetry estimate for high-LET irradiation. Radiat. Environ. Biophys., 46(3), 229-235. PMID: 17443338.10.1007/s00411-007-0110-717443338Search in Google Scholar

19. Wang, Z. Z., Li, W. J., Zhi, D. J., Gao, Q. X., Qu, Y., & Wang, B. Q. (2009). Prematurely condensed chromosome fragments in human lymphocytes induced by high doses of high-linear-energy-transfer irradiation. Mutat. Res., 679(1/2), 9-12. DOI: 10.1016/j. mrgentox.2009.08.001. Epub 2009 Aug 8.Search in Google Scholar

20. Durante, M., Furusawa, Y., & Gotoh, E. (1998). A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int. J. Radiat. Biol., 74(4), 457-462. PMID: 9798956.10.1080/0955300981413209798956Search in Google Scholar

21. Resjö, S., Oknianska, A., Zolnierowicz, S., Manganiello, V., & Degerman, E. (1999). Phosphorylation and activation of phosphodiesterase type 3B (PDE3B) in adipocytes in response to serine/threonine phosphatase inhibitors: deactivation of PDE3B in vitro by protein phosphatase type 2A. Biochem. J., 341(3), 839-845. PMC 1220425.10.1042/bj3410839Search in Google Scholar

22. Pantelias, G. E., & Maillie, H. D. (1983). A simple method for premature chromosome condensation induction in primary human and rodent cells using polyethylene glycol. Somatic Cell Genet., 9(5), 533-547. PMID: 6623312.10.1007/BF015742576623312Search in Google Scholar

23. Pantelias, G. E., & Maillie, H. D. (1984). The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological dosimetry. Radiat. Res., 99(1), 140-150. PMID: 6539927.10.2307/3576452Search in Google Scholar

24. Lamadrid Boada, A. I., Romero Aguilera, I., Terzoudi, G. I., González Mesa, J. E., Pantelias, G., & García, O. (2013). Rapid assessment of high-dose radiation exposures through scoring of cell-fusion-induced premature chromosome condensation and ring chromosomes. Mutat. Res., 757(1), 45-51. DOI: 10.1016/j. mrgentox.2013.06.021. Epub 2013 July 12.Search in Google Scholar

25. Darroudi, F., Terzoudi, G. I., Pantelias, G., Sommer, S., & Hajidekova, V. (2013). RENEB (Realizing the European Network of Biodosimetry). Periodic Report 1 January 2012 - 30 June 2013, WP 1, Task 4 for EC.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo