1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Investigation of corrosion defects in titanium by positron annihilation

Published Online: 01 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 755 - 758
Received: 19 Jun 2015
Accepted: 01 Sep 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The positron annihilation method was used to study the formation of defects in titanium samples during their corrosion in the vapor of a 3% HCl solution. In particular, the distribution of defects depending on the distance from the corroding surface and the impact of an external magnetic field on the concentration of vacancies forming during the corrosion of titanium layers close to the surface were determined.

Keywords

1. Hautojärvi, P. (1979). Introduction of positron annihilation. In P. Hautojärvi (Ed.), Positron in solids (pp. 1–22). Berlin: Springer-Verlag.Search in Google Scholar

2. Pietrzak, R., Szatanik, R., & Szuszkiewicz, M. (1999). Measurements of positrons lifetimes in corroded nickel. Acta Phys. Pol. A, 95(4), 647–651.10.12693/APhysPolA.95.647Search in Google Scholar

3. Pietrzak, R., Szatanik, R., & Jaworska, A. (2006). The influence of magnetic field on annihilation of positrons in corroded steel St-20. Acta Phys. Pol. A, 110(5), 677–681.10.12693/APhysPolA.110.677Search in Google Scholar

4. Pietrzak, R., & Szatanik, R. (2010). Effect of magnetic field on the corrosion of iron and St20 steel as studied by positron annihilation. Phys. Status Solidi B, 247(7), 1822–1828. DOI: 10.1002/pssb.200945124.10.1002/pssb.200945124Search in Google Scholar

5. Waskaas, M. (1996). Magnetic field effect on electrode reactions. I. Effects on the open-circuit potential of electrodes in solutions of different magnetic properties. Acta Chem. Scand., 50, 516–520.10.3891/acta.chem.scand.50-0516Search in Google Scholar

6. Chiba, A., Kawazu, K., Nakano, O., Tamura, T., Yoshihara, S., & Sato, E. (1994). The effects of magnetic fields on the corrosion of aluminium sodium chloride solutions. Corros. Sci., 36(3), 539–543. DOI: 10.1016/0010-938X(94)90042-6.10.1016/0010-938X(94)90042-6Search in Google Scholar

7. Kelly, E. J. (1977). Magnetic field effects electrochemical reactions occurring at metal/flowing-electrolyte interfaces. J. Electrochem. Soc., 124(7), 987–994. DOI: 10.1149/1.2133514.10.1149/1.2133514Search in Google Scholar

8. Pietrzak, R., & Szatanik, R. (2014). The influence of a magnetic field on the formation of corrosion defects in selected metals and steels, analyzed using positron annihilation method. Acta Phys. Pol. A, 125(3), 733–736.10.12693/APhysPolA.125.733Search in Google Scholar

9. Macdonald, D. D. (1999). Passivity – the key to our metals-based civilization. Pure Appl. Chem., 77(6), 951–978. DOI: 10.1351/pac199971060951.10.1351/pac199971060951Search in Google Scholar

10. Linhardt, P., Ball, G., & Schlemmer, E. (2005). Electrochemical investigation of chloride induced pitting of stainless steel under the influence of a magnetic field. Corr. Sci., 47(7), 1599–1603. DOI: 10.1016/j.corsci.2004.09.002.10.1016/j.corsci.2004.09.002Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo