1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Results of positron annihilation lifetime spectroscopy (PALS) and microscopic studies on simple microorganisms, brewing yeasts, are presented. Lifetime of ortho-positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer-lived component) for lyophilized and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water – the main component of the cell – affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter-lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water, an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilized, dried, and wet yeasts with best possible resolution were obtained using inverted microscopy (IM) and environmental scanning electron microscopy (ESEM) methods. As a result, visible changes to the surface of the cell me mbrane were observed in ESEM images.

Keywords

1. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63, 51–58. DOI: 10.1016/0301-0104(81)80307-2.10.1016/0301-0104(81)80307-2Search in Google Scholar

2. Tao, S. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56, 5499–5510.10.1063/1.1677067Search in Google Scholar

3. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Ryan, E. T., & Ho, H. -M. (1999). Positronium annihilation in mesoporous thin films. Phys. Rev. B, 60, R5157(R). DOI: 10.1103/PhysRevB.60.R5157.10.1103/PhysRevB.60.R5157Search in Google Scholar

4. Goworek, T., Ciesielski, K., Jasinska, B., & Wawryszczuk, J. (1997). Positronium in large voids Silicagel. Chem. Phys. Lett., 272(1/2), 91–95.10.1016/S0009-2614(97)00504-6Search in Google Scholar

5. Goworek, T., Ciesielski, K., Jasinska, B., & Wawryszczuk, J. (1998). Positronium states in the pores of silicagel. Chem. Phys., 230(2/3), 305–315.10.1016/S0301-0104(98)00068-8Search in Google Scholar

6. Jasińska, B., Kozioł, A. E., & Goworek, T. (1996). Ortho-positronium lifetimes in nanospherical voids. J. Radioanal. Chem., 210(2), 617–623. DOI: 10.1007/BF02056403.10.1007/BF02056403Search in Google Scholar

7. Jasińska, B., Kozioł, A. E., & Goworek, T. (1999). Void shapes and o-Ps lifetime in molecular crystals. Acta Phys. Pol. A, 95, 557–561.10.12693/APhysPolA.95.557Search in Google Scholar

8. Ismail, R. A., Haburi, N. F., & Ali, A. M. (2012). Structural and electrical properties of CdO/porous-Si heterojunction. Iraqi Journal of Physics, 10, 76–85.Search in Google Scholar

9. Pietrzak, R., Borbulak, S., & Szatanik, R. (2013). Influence of neoplastic therapy on the investigated blood using positron annihilation lifetime spectroscope. Nukleonika, 58(1), 199–202.Search in Google Scholar

10. Jean, Y. C., & Ache, H. J. (1977). Positronium reactions in micellar systems. J. Am. Chem. Soc., 99(23), 7504–7509. DOI: 10.1021/ja00465a018.10.1021/ja00465a018Search in Google Scholar

11. Jean, Y. C., Li, Y., Liu, G., Chen, H. M., Zhang, J. J., & Gadzia, J. E. (2006). Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer. Appl. Surf. Sci., 252, 3166–3171. DOI: 10.1016/j.apsusc.2005.08.101.10.1016/j.apsusc.2005.08.101Search in Google Scholar

12. Liu, G., Chen, H., Chakka, L., Gadzia, J. E., & Jean, Y. C. (2007). Applications of positron annihilation to dermatology and skin cancer. Phys. Status Solidi C, 4(10), 3912–3915. DOI: 10.1002/pssc.200675736.10.1002/pssc.200675736Search in Google Scholar

13. Axpe, E., Lopez-Euba, T., Castellanos-Rubio, A., Merida, D., Garcia, J. A., Plaza-Izurieta, L., Fernandez-Jimenez, N., Plazaola, F., & Bilbao, J. R. (2014). Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy. PLoS One 2, 9(1). DOI: 10.1371/journal.pone.0083838.10.1371/journal.pone.0083838Search in Google Scholar

14. Salgueiro, W., Somoza, A., Cabrera, O., & Consolati, G. (2004). Porosity study on free mineral addition cement paste. Cement Concrete Res., 34(1), 91–97. DOI: 10.1016/S0008-8846(03)00258-8.10.1016/S0008-8846(03)00258-8Search in Google Scholar

15. Hugenschmidt, C., & Ceeh, H. (2014). The free volume in dried and H2O-loaded biopolymers studied by positron lifetime measurements. J. Phys. Chem. B, 118, 9356–9360. DOI: 10.1021/jp504504p.10.1021/jp504504pSearch in Google Scholar

16. Barnett, J. A., Payne, R. W., & Yarrow, D. (1983). Yeasts: characteristics and identification. Cambridge University Press.Search in Google Scholar

17. Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev., 66(2), 300–372. DOI: 10.1128/MMBR.66.2.300-372.2002.10.1128/MMBR.66.2.300-372.2002Search in Google Scholar

18. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374, 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7Search in Google Scholar

19. Moskal, P. (2014). Patent Application No.: PCT/EP2014/068374; WO2015028604.Search in Google Scholar

20. Moskal, P., Niedźwiecki, Sz., Bednarski, T., Czerwiński, E., Kapłon, Ł., Kubicz, E., Moskal, I., Pawlik-Niedźwiecka, M., Sharma, N. G., Silarski, M., Zieliński, M., Zoń, N., Białas, P., Gajos, A., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Molenda, M., Pałka, M., Raczyński, L., Rudy, Z., Salabura, P., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., & Wiślicki, W. (2014). Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 764, 317–321. DOI: 10.1016/j.nima.2014.07.052. [arXiv:1407.7395].10.1016/j.nima.2014.07.052Search in Google Scholar

21. Moskal, P., Zoń, N., Bednarski, T., Białas, P., Czerwiński, E., Gajos, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Wiślicki, W., & Zieliński, M. (2015). A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 775, 54–62. DOI: 10.1016/j.nima.2014.12.005. [arXiv:1412.6963].10.1016/j.nima.2014.12.005Search in Google Scholar

22. Moskal, P., Sharma, N. G., Silarski, M., Bednarski, T., Białas, P., Bulka, J., Czerwiński, E., Gajos, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Wiślicki, W., Wochlik, I., Zieliński, M., & Zoń, N. (2015). Hit time and hit position reconstruction in the J-PET detector based on a library of averaged model signals. Acta Phys. Pol. A, 127(5), 1495–1499. DOI: 10.12693/APhysPolA.127.149. [arXiv:1502.07886].Search in Google Scholar

23. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Molenda, M., Moskal, I., Niedźwiecki, Sz., Pałka, M., Pawlik-Niedźwiecka, M., Rudy, Z., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Zieliński, M., & Zoń, N. (2014). Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 764, 186–192. DOI: 10.1016/j.nima.2014.07.032. [arXiv:1311.6127].10.1016/j.nima.2014.07.032Search in Google Scholar

24. Raczyński, L., Moskal, P., Kowalski, P., Wiślicki, W., Bednarski, T., Białas, P., Czerwiński, E., Gajos, A., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kozik, T., Krzemień, W., Kubicz, E., Niedźwiecki, Sz., Pałka, M., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Wieczorek, A., Zieliński, M., & Zoń, N. (2015). Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 786, 105–112. DOI: 10.1016/j.nima.2015.03.032. [arXiv:1503.05188].10.1016/j.nima.2015.03.032Search in Google Scholar

25. Wieczorek, A., Moskal, P., Niedźwiecki, Sz., Bednarski, T., Białas, P., Czerwiński, E., Danel, A., Gajos, A., Gruntowski, A., Kamińska, D., Kapłon, Ł., Kochanowski, A., Korcyl, G., Kowal, J., Kowalski, P., Kozik, T., Krzemień, W., Kubicz, E., Molenda, M., Pałka, M., Raczyński, L., Rudy, Z., Rundel, O., Salabura, P., Sharma, N. G., Silarski, M., Słomski, A., Smyrski, J., Strzelecki, A., Uchacz, T., Wiślicki, W., Zieliński, M., & Zoń, N. (2015). A pilot study of the novel J-PET plastic scintillator with 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. Acta Phys. Pol. A, 127(5), 1487–1490. DOI: 10.12693/APhysPolA.127.1487. [arXiv:1502.02901].10.12693/APhysPolA.127.1487Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo