1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Isotropic distributions in hcp crystals

Published Online: 01 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 741 - 744
Received: 18 Jun 2015
Accepted: 20 Aug 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Some anisotropic quantities in crystalline solids can be determined from their knowledge along a limited number of sampling directions. The importance of the choice of such directions is illustrated on the example of estimating, from angular correlation of annihilation radiation data, the isotropic electron momentum density in Gd.

Keywords

1. Houston, W. V. (1948). Normal vibrations of a crystal lattice. Rev. Mod. Phys., 20, 161–165.10.1103/RevModPhys.20.161Search in Google Scholar

2. Mueller, F. M., & Priestley, M. G. (1966). Inversion of cubic de Haas-van Alphen Data, with an application to palladium. Phys. Rev., 148, 638–643.10.1103/PhysRev.148.638Search in Google Scholar

3. Bhatia, A. B. (1955). Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev., 97, 363–371.10.1103/PhysRev.97.363Search in Google Scholar

4. Betts, D. D., Bhatia, A. B., & Womann, M. (1956). Houston’s method and its application to the calculation of characteristic temperatures of cubic crystals. Phys. Rev., 104, 37–42.10.1103/PhysRev.104.37Search in Google Scholar

5. Betts, D. D., Bhatia, A. B., & Horton, J. W. (1956). Debye characteristic temperatures of certain noncubic crystals. Phys. Rev., 104, 43–47.10.1103/PhysRev.104.43Search in Google Scholar

6. Ghosh, G., Delsante, S., Borzone, G., Asta, M., & Ferro, R. (2006). Phase stability and cohesive properties of Ti-Zn intermetallics: First-principles calculations and experimental results. Acta Mater., 54, 4977–4997.10.1016/j.actamat.2006.04.038Search in Google Scholar

7. Taylor, C. D., Lookman, T., & Scott, L. R. (2010). Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3. Acta Mater., 58, 1045–1055.10.1016/j.actamat.2009.10.021Search in Google Scholar

8. Bansil, A. (1979). Coherent-potential and average-matrix approximations for disordered muffin-tin alloys. II. Application to realistic systems. Phys. Rev. B, 20, 4035–4043.10.1103/PhysRevB.20.4035Search in Google Scholar

9. Prasad, R., & Bansil, A. (1980). Special directions for Brillouin-zone integration: Application to density of states calculations. Phys. Rev. B, 21, 496–503.10.1103/PhysRevB.21.496Search in Google Scholar

10. Šob, M., Szuszkiewicz, S., & Szuszkiewicz, M. (1984). Polarized positron annihilation enhancement effects in ferromagnetic iron. Phys. Status Solidi B, 123, 649–652.10.1002/pssb.2221230230Search in Google Scholar

11. Šob, M. (1985). Electronic structure and positron annihilation in alkali metals: Isolation of ionic core contribution and valence high-momentum components. Solid State Commun., 53, 249–253.10.1016/0038-1098(85)90045-6Search in Google Scholar

12. Aguiar, J. C., Mitnik, D., & DiRocco, H. O. (2015). Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids, 83, 64–69.10.1016/j.jpcs.2015.03.023Search in Google Scholar

13. Ahuja, B. L., Sharma, M. D., Sharma, B. K., Hamouda, S., & Cooper, M. J. (1994). Compton profile of polycrystalline yttrium. Phys. Scripta, 50, 301–304.10.1088/0031-8949/50/3/015Search in Google Scholar

14. Ahuja, B. L., Sharma, M., & Bross, H. (2007). Compton profile study of gold: Theory and experiment. Phys. Status Solidi B, 244, 642–649.10.1002/pssb.200642143Search in Google Scholar

15. Ahuja, B. L., Mohammad, F. M., Mohammed, S. F., Sahariya, J., Mund, H. S., & Heda, N. L. (2015). Compton scattering and charge transfer in Er substituted DyAl2. J. Phys. Chem., 77, 50–55.10.1016/j.jpcs.2014.09.010Search in Google Scholar

16. Bross, H. (2006). Special directions for surface integrals in cubic lattices with application to the evaluation of the Compton profile of copper. Phys. Status Solidi B, 243, 653–665.10.1002/pssb.200541339Search in Google Scholar

17. Bross, H. (2004). The local density approximation limit of the momentum density and the Compton profiles of Al. J. Phys.-Condens. Mat., 16, 7363–7378.10.1088/0953-8984/16/41/016Search in Google Scholar

18. Bross, H. (2005). Electronic structure of Li with emphasis on the momentum density and the Compton profile. Phys. Rev. B, 72, 115109(14 pp.).10.1103/PhysRevB.72.115109Search in Google Scholar

19. Chu-Nan, Chang, Yu-Mei, Shu, Chuhn-Chuh, Chen, & Huey-Fen, Liu. (1993). The Compton profiles of tantalum. J. Phys.-Condens. Mat., 5, 5371–5376.10.1088/0953-8984/5/30/016Search in Google Scholar

20. Joshi, K. B., Pandya, R. K., Kothari, R. K., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. Phys. Status Solidi B, 246, 1268–1274.10.1002/pssb.200844392Search in Google Scholar

21. Ohata, T., Itou, M., Matsumoto, I., Sakurai, Y., Kawata, H., Shiotani, N., Kaprzyk, S., Mijnarends, P. E., & Bansil, A. (2000). High-resolution Compton scattering study of the electron momentum density in Al. Phys. Rev. B, 62, 16528–16535.10.1103/PhysRevB.62.16528Search in Google Scholar

22. Sharma, G., Joshi, K. B., Mishra, M. C., Kothari, R. K., Sharma, Y. C., Vyas, V., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. J. Alloys Compd., 485, 682–686.10.1016/j.jallcom.2009.06.043Search in Google Scholar

23. Kawasuso, A., Maekawa, M., Fukaya, Y., Yabuuchi, A., & Mochizuki, I. (2011). Polarized positron annihilation measurements of polycrystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B, 83, 0406(R).10.1103/PhysRevB.83.100406Search in Google Scholar

24. Kontrym-Sznajd, G. (2013). Utilization of symmetry of solids in experimental investigations. Nukleonika, 58, 205–208.Search in Google Scholar

25. Waspe, R. L., & West, R. N. (1982). The Fermi surface of gadolinium. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 328–330). Amsterdam: North-Holland Publ. Co.Search in Google Scholar

26. Kontrym-Sznajd, G., & Samsel-Czekała, M. (2012). Special directions in momentum space. II. Hexagonal, tetragonal and trigonal symmetries. J. Appl. Crystal., 45, 1254–1260.10.1107/S0021889812041283Search in Google Scholar

27. Kontrym-Sznajd, G., Samsel-Czekała, M., Pietraszko, A., Sormann, H., Manninen, S., Huotari, S., Hämäläinen, K., Laukkanen, J., West, R. N., & Schülke, W. (2002). Electron momentum density in yttrium. Phys. Rev. B, 66, 155110(10 pp).10.1103/PhysRevB.66.155110Search in Google Scholar

28. Walters, P. A., Mayers, J., & West, R. N. (1982). Two-dimensional electron-positron momentum densities in the hcp metals: Mg, Zn, and Cd. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 334–336). Amsterdam: North-Holland Publ. Co.Search in Google Scholar

29. Stewart, A. T. (1957). Momentum distribution of metallic electrons by positron annihilation. Can. J. Phys., 35, 168–183.10.1139/p57-020Search in Google Scholar

30. Lam, L., & Platzman, P. M. (1974). Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism. Phys. Rev. B, 9, 5122–5127.10.1103/PhysRevB.9.5122Search in Google Scholar

31. Kubo, Y. (2005). Electron correlation effects on Compton profiles of copper in the GW approximation. J. Phys. Chem. Solids, 66, 2202–2206.10.1016/j.jpcs.2005.09.043Search in Google Scholar

32. Bansil, A. (1975). Special directions in the Brillouin zone. Solid State Commun., 16, 885–889.10.1016/0038-1098(75)90886-8Search in Google Scholar

33. Fehlner, W. R., Nickerson, S. B., & Vosko, S. H. (1976). Cubic harmonic expansions using Gauss integration formulas. Solid State Commun., 19, 83–86.10.1016/0038-1098(76)91735-XSearch in Google Scholar

34. Fehlner, W. R., & Vosko, S. H. (1976). A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys., 54, 215–216.10.1139/p76-256Search in Google Scholar

35. Wasserman, E., Stixrude, L., & Cohen, R. E. (1996). Thermal properties of iron at high pressures and temperatures. Phys. Rev. B, 53, 8296–8309.10.1103/PhysRevB.53.8296Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo