1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year
access type Open Access

Toward a European Network of Positron Laboratories

Published Online: 01 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 733 - 739
Received: 04 Aug 2015
Accepted: 21 Aug 2015
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year

Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB) method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.


1. Dupasquier, A., Mills Jr, A. P., & Brusa, R. (Eds.). (2010). Physics with many positrons. 174th Proceedings of the International School of Physics “Enrico Fermi”. Amsterdam: IOS Press.Search in Google Scholar

2. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Scarel, G., & Fanciulli, M. (2007). Innovative dielectrics for semiconductor technology. Radiat. Phys. Chem., 76(2), 189–194. DOI: 10.1016/j.radphyschem.2006. in Google Scholar

3. Karwasz, G. P., Zecca, A., Brusa, R. S., & Pliszka, D. (2004). Application of positron annihilation techniques for semiconductor studies. J. Alloy. Compd., 382(1/2), 244–251. DOI: 10.1016/j.jallcom.2004. in Google Scholar

4. Dupasquier, A., Kögel, G., & Somoza, A. (2004). Studies of light alloys by positron annihilation techniques. Acta Mater., 52, 4707. DOI: 10.1016/j.actamat.2004. in Google Scholar

5. Goworek, T., Zaleski, R., & Wawryszczuk, J. (2004). Observation of intramolecular defects in n-alkanes C25H52-C29H60 by the positron annihilation method. Chem. Phys. Lett., 394, 90–92. DOI: 10.1016/j.cplett.2004.06.11610.1016/j.cplett.2004.06.116Search in Google Scholar

6. Śniegocka, M., Jasińska, B., Goworek, T., & Zaleski, R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett., 430, 351–354. DOI: 10.1016/j.cplett.2006. in Google Scholar

7. Hakala, M., Puska, M. J., & Nieminen, R. M. (1998). Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si. Phys. Rev. B, 57, 7621. DOI: 10.1103/PhysRevB.57.7621.10.1103/PhysRevB.57.7621Search in Google Scholar

8. Brusa, R. S., Deng, W., Karwasz, G. P., & Zecca, A. (2002). Doppler-broadening measurements of positron annihilation with high-momentum electrons in pure metals. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 194, 519–531. DOI: 10.1016/S0168-583X(02)00953-9.10.1016/S0168-583X(02)00953-9Search in Google Scholar

9. Karbowski, A., Fidelus, J., & Karwasz, G. (2011). Testing an Ortec Lifetime System. Mater. Sci. Forum, 666, 155–159. DOI: 10.4028/www.scientific.net/MSF.666.155.Search in Google Scholar

10. Karbowski, A., Fisz, J. J., Karwasz, G. P., Kansy, J., & Brusa, R. S. (2008). Genetic algorithms for positron lifetime data. Acta Phys. Pol. A, 113, 1365–1372.10.12693/APhysPolA.113.1365Search in Google Scholar

11. Brusa, R., Deng, W., Karwasz, G. P., Zecca, A., & Pliszka, D. (2001). Positron annihilation study of vacancy-like defects related to oxygen precipitates in Czochralski-type Si. Appl. Phys. Lett., 79, 1492. DOI: 10.1063/1.1401782.10.1063/1.1401782Search in Google Scholar

12. Saarinen, K., Nissilä, J., Kauppinen, H., Hakala, M., Puska, M. J., Hautojärvi, P., & Corbel, C. (1999). Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett., 82, 1883–1886. DOI: 10.1103/PhysRevLett.82.1883.10.1103/PhysRevLett.82.1883Search in Google Scholar

13. Coleman, P. G. (Ed.). (2000), Positron beams and their applications. Singapore: World Scientific.10.1142/3719Search in Google Scholar

14. Brusa, R. S., Karwasz, G. P., Bettonte, M., & Zecca, A. (1997). A high performance electrostatic positron beam. Appl. Surf. Sci., 116, 59–62. DOI: 10.1016/S0169-4332(96)01028-8.10.1016/S0169-4332(96)01028-8Search in Google Scholar

15. Zecca, A., Bettonte, M., Paridaens, J., Karwasz, G. P., & Brusa, R. S. (1998). A new electrostatic positron beam for surface studies. Meas. Sci. Technol., 9, 409–416. DOI: 10.1088/0957-0233/9/3/014.10.1088/0957-0233/9/3/014Search in Google Scholar

16. Zecca, A., Brusa, R. S., Duarte-Naia, M., Karwasz, G. P., Paridaens, J., Piazza, A., Kögel, G., Sperr, P., Britton, D. T., Uhlmann, K., Willutzki, P., & Triftshauser, W. (1995) A pulsed positron microbeam. Europhys. Lett., 29, 617–622. DOI: 10.1209/0295-5075/29/8/005.10.1209/0295-5075/29/8/005Search in Google Scholar

17. Hamada, E., Oshima, N., Suzuki, T., Kobayashi, H., Kondo, K., Kanazawa, I., & Ito, Y. (2000). New system for a pulsed slow-positron beam using a radioisotope. Radiat. Phys. Chem., 58, 771–775. DOI: 10.1016/S0969-806X(00)00257-7.10.1016/S0969-806X(00)00257-7Search in Google Scholar

18. Hugenschmidt, C., Piochacz, C., Reiner, M., & Schrekkenbach, K. (2012). The NEPOMUC upgrade and advanced positron beam experiments. New J. Phys., 14, 055027. DOI: 10.1088/1367-2630/14/5/055027.10.1088/1367-2630/14/5/055027Search in Google Scholar

19. Oshima, N., Suzuki, R., Ohdaira, R., Kinomura, A., Narumi, T., Uedono, A., & Fujinami, M. (2008). Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator. J. Appl. Phys., 103, 094916. DOI: 10.1063/1.2919783.10.1063/1.2919783Search in Google Scholar

20. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Laidani, N., Bartali, R., & Anderle, M. (2005). Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate. Appl. Phys. Lett., 86, 221906. DOI: 10.1063/1.1940738.10.1063/1.1940738Search in Google Scholar

21. Ferragut, R., Calloni, A., Dupasquier, A., Consolati, G., Quasso, F., Giammarchi, M. G., Trezzi, D., Egger, W., Ravelli, L., Petkov, M. P., Jones, S. M., Wang, B., Yaghi, O. M., Jasińska, B., Chiodini, N., & Paleari, A. (2010). Positronium formation in porous materials for antihydrogen production. J. Phys. Conf. Ser., 225, 012007. DOI: 10.1088/1742-6596/225/1/012007.10.1088/1742-6596/225/1/012007Search in Google Scholar

22. Consolati, G. (2002). Positronium trapping in small voids: Influence of their shape on positron annihilation results. J. Chem. Phys., 117, 7279. DOI: 10.1063/1.1507578.10.1063/1.1507578Search in Google Scholar

23. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68(3/4), 531–534. DOI: 10.1016/S0969-806X(03)00224-X.10.1016/S0969-806X(03)00224-XSearch in Google Scholar

24. Jasińska, B., Dawidowicz, A. L., Goworek, T., & Wawryszczuk, J. (2003). Pore size determination by positron annihilation lifetime spectroscopy. Opt. Appl., 33(1), 7–12.Search in Google Scholar

25. Gorgol, M., Jasińska, B., & Reisfeld, R. (2015). PALS investigations of matrix Vycor glass and doped by molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model. Nukleonika, 60(4), 717–720.Search in Google Scholar

26. Macchi, C., Mariotto, G., Karwasz, G. P., Zecca, A., Bettonte, M., & Brusa, R. S. (2004). Depth profiled porosity and micro-structure evolution studied by Positron Annihilation and Raman spectroscopy in SiOCH low-κ films. Mater. Sci. Semicond. Proc., 7, 289–294. DOI: 10.1016/j.mssp.2004. in Google Scholar

27. Brusa, R. S., Spagolla, M., Karwasz, G. P., Zecca, A., Ottaviani, G., Corni, F., & Carollo, E. (2004). Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy. J. Appl. Phys., 95, 2348–2354. DOI: 10.1063/1.1644925.10.1063/1.1644925Search in Google Scholar

28. Brusa, R. S., Karwasz, G. P., Tiengo, N., Zecca, A., Corni, F., Tonini, R., & Ottaviani, G. (2000). Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy. Phys. Rev. B, 61, 10154–10166. DOI: 10.1103/PhysRevB.61.10154.10.1103/PhysRevB.61.10154Search in Google Scholar

29. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Egger, W., Sperr, P., & Kögel, G. (2006). Decoration of buried surfaces in Si detected by positron annihilation spectroscopy. Appl. Phys. Lett., 88, 011920. DOI: 10.1063/1.2162691.10.1063/1.2162691Search in Google Scholar

30. Song, M. -Y., Yoon, J. -S., Cho, H., Itikawa, Y., Karwasz, G. P., Kokoouline, V., Nakamura, Y., & Tennyson, J. (2015). Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data, 44, 023101. DOI: 10.1063/1.4918630.10.1063/1.4918630Search in Google Scholar

31. Yu-Wei, You, Dongdong, Li, Xiang-Shan, Kong, Xuebang, Wu, Liu, C. S., Fang, Q. F., Pan, B. C., Chen, J. L., & Luo, G. -N. (2014). Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment. Nucl. Fusion, 54, 103007. DOI: 10.1088/0029-5515/54/10/103007.10.1088/0029-5515/54/10/103007Search in Google Scholar

32. Ogorodnikova, O. V., Schwarz-Selinger, T., Sugiyama, K., & Alimov, V. Kh. (2011). Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas. J. Appl. Phys., 109, 013309. DOI: 10.1063/1.3505754.10.1063/1.3505754Search in Google Scholar

33. Tyburska-Püschel, B., Alimov, V. Kh, ’t Hoen, M. H. J., Zgardzinska, B., Dorner, J., & Hatano, Y. (2013). Deuterium retention in tungsten damaged with MeV-range W ions at various temperatures and then exposed to D2 gas. In 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications, May 13–17, 2013. Forschungszentrum Juelich, Germany. http://www.fz-juelich.de/conferences/PFMC-14/EN/_SharedDocs/Downloads/EN/pfmc14_book_of_abstracts.html?nn=1264182.Search in Google Scholar

34. Ogorodnikova, O. V., & Sugiyama, K. (2013). Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer. J. Nucl. Mater., 442, 518–527. DOI: 10.1016/j.jnucmat.2013. in Google Scholar

35. Ogorodnikova, O. V., & Gann, V. (2015). Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions. J. Nucl. Mater., 460, 60–71. DOI: 10.1016/j.jnucmat.2015. in Google Scholar

36. Ogorodnikova, O. V., Sugiyama, K., Barthe, M. -F., Sibid, M., Ciupiński, Ł., & Płociński, T. (2013). Saturation of deuterium trapping at radiation-induced damage in self-ion irradiated tungsten. In 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China. http://edoc.mpg.de/634511.Search in Google Scholar

37. Egger, W. (2010). Pulsed low-energy positron beams in materials sciences. In R. S. Brusa, A. Dupasquier, & A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 419–449). Amsterdam: North-Holland Publ. Co.Search in Google Scholar

38. Hugenschmidt, C. (2010). Positron sources and positron beams. In R. S. Brusa, A. Dupasquier, & A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 399–417). Amsterdam: North-Holland Publ. Co.Search in Google Scholar

39. Brandt, W., Berko, S., & Walker, W. W. (1960). Positronium decay in molecular substances. Phys. Rev., 120, 1289–1295.10.1103/PhysRev.120.1289Search in Google Scholar

40. Uhlmann, K., Triftshäuser, W., Kögel, G., Sperr, P., Britton, D. T., Zecca, A., Brusa, R. S., & Karwasz, G. P. (1995). A concept of a scanning positron microscope. Fresenius J. Anal. Chem., 353, 594–597. DOI: 10.1007/BF00321331.10.1007/BF00321331Search in Google Scholar

41. Zecca, A., & Karwasz, G. (2001). Positrons go into detail. Phys. World, 11, 21.10.1088/2058-7058/14/11/26Search in Google Scholar

42. Kögel, G., Egger, W., Rödling, S., & Gudladt, H. J. (2004). Investigation of fatigue cracks in an Al-based alloy by means of pulsed positron (micro)beams. Mater. Sci. Forum, 445/446,126–128. DOI: 10.4028/www.scientific.net/MSF.445-446.126.Search in Google Scholar

43. Uedono, A., Kurihara, K., Yoshihara, N., Nagao, S., & Ishibashi, S. (2015). Vacancies in InxGa1−xN/GaN multiple quantum wells fabricated on m-plane GaN probed by a monoenergetic positron beam. Appl. Phys. Express, 8, 051002. DOI: 10.7567/APEX.8.051002.10.7567/APEX.8.051002Search in Google Scholar

44. Makochekanwa, C., Machacek, J. R., Jones, A. C. L., Caradonna, P., Slaughter, D. S., McEachran, R. P., Sullivan, J. P., Buckman, S. J., Bellm, S. M., Lohmann, B., Fursa, D. V., Bray, I., Mueller, D. W., Stauffer, A. D., & Hoshino, M. (2011). Low-energy positron interactions with krypton. Phys. Rev. A, 83, 032721. DOI: 10.1103/PhysRevA.83.032721.10.1103/PhysRevA.83.032721Search in Google Scholar

45. Pelli, A., Laakso, A., Rytsölä, K., & Saarinen, K. (2006). The design of the main accelerator for a pulsed positron beam. Appl. Surf. Sci., 252, 3143–3147. DOI: 10.1016/j.apsusc.2005. in Google Scholar

46. Wagner, A., Anwand, W., Butterling, M., Cowan, T. E., Fiedler, F., Fritz, F., Kempe, M., & Krause-Rehberg, R. (2015). Positron-annihilation lifetime spectroscopy using electron Bremsstrahlung. J. Phys. Conf. Ser., 618, 012042. DOI: 10.1088/1742-6596/618/1/012042.10.1088/1742-6596/618/1/012042Search in Google Scholar

47. Köver, A., Williams, A. I., Murtag, D. J., Fayer, S. E., & Laricchia, G. (2014). An electrostatic brightness-enhanced timed positron beam for atomic collision experiments. Meas. Sci. Technol., 25, 075013. DOI: 10.1088/0957-0233/25/7/075013.10.1088/0957-0233/25/7/075013Search in Google Scholar

48. Schut, H., Van Veen, A., de Roode, J., & Labohm, F. (2004). Long term performance of the reactor based positron beam POSH. Mater. Sci. Forum, 445/446, 507–509.10.4028/www.scientific.net/MSF.445-446.507Search in Google Scholar

49. Desgardin, P., Liszkay, L., Barthe, M. F., Henry, L., Briaud, J., Saillard, M., Lepolotec, L., Corbel, C., Blondiaux, G., Colder, A., Marie, P., & Levalois, M. (2001). Slow positron beam facility in Orleans. Mater. Sci. Forum, 363, 523–525.10.4028/www.scientific.net/MSF.363-365.523Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo