1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Physico chemical properties of irradiated i-SANEX diluents

Published Online: 30 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 893 - 898
Received: 19 Jun 2015
Accepted: 21 Aug 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The development of effective processes to recover minor actinides from spent nuclear fuel cannot leave out of consideration the evaluation of the impact of ionizing radiations on safety, fluid dynamics and extraction efficiency. It is common knowledge from the literature that radiation damage mainly affects the diluents and, indirectly, the extractants [1], but a lack of knowledge remains regarding the radiolytic behavior of innovative selective actinide extraction (i-SANEX) diluents [2, 3]. As natural prosecution of the work already performed on diluted nitric acid solutions [4], 0.44 M nitric acid solutions were irradiated in contact with a mixture of kerosene + 5 vol.% 1-octanol by a Co-60 source at 2.5 kGy/h dose rate and up to 100 kGy absorbed dose, conditions of interest for the future industrial facility. Density, viscosity, acidity, nitrate anion concentration and phase transfers were systematically measured before and after γ-irradiation. This was performed because radiation-induced modifications of these parameters may induce alterations of both the fluid dynamics and the separation performances of the extracting system. The results suggest that the fluid-dynamics of the system should be unaltered. In fact, only slight alterations of the organic phase viscosity and of the aqueous phase acidity were measured after irradiation, suggesting the occurrence of limited phase transfers and of diluent by-products formation.

Keywords

1. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27, 1-25. DOI: 10.1080/07366290802544767.10.1080/07366290802544767Search in Google Scholar

2. Tripathi, S. C., & Ramanujam, A. (2003). Effect of radiation-induced physicochemical transformations on density and viscosity of 30% TBP-n-dodecane- -HNO3 system. Separ. Sci. Technol., 38, 2307-2326. DOI: 10.1081/SS-120021626.10.1081/SS-120021626Search in Google Scholar

3. Bourg, S., Poinssot, C., Geist, A., Cassayre, L., Rhodes, C., & Ekberg, C. (2012). Advanced reprocessing developments in Europe status on European projects ACSEPT and ACTINET-I3. Procedia Chem., 7, 166-171. DOI: 10.1016/j.proche.2012.10.028.10.1016/j.proche.2012.10.028Search in Google Scholar

4. Mossini, E., Macerata, E., Giola, M., Brambilla, L., Castiglioni, C., & Mariani, M. (2015). Radiation- -induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing. J. Radioanal. Nucl. Chem., 304, 395-400. DOI: 10.1007/s10967-014-3556-5.10.1007/s10967-014-3556-5Search in Google Scholar

5. Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2009). ACSEPT-Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3425-3427. DOI: 10.1016/j.nucengdes. 2011.03.011.1.Search in Google Scholar

6. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2010). The effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent system. Solvent Extr. Ion Exch., 28, 415-436. DOI: 10.1080/07366299.2010.485548.10.1080/07366299.2010.485548Search in Google Scholar

7. Pikaev, A. K., Kabakchi, S. A., & Egorov, G. F. (1988). Some radiation chemical aspects of nuclear engineering. Radiat. Phys. Chem., 31, 789-803. DOI: 10.1016/1359-0197(88)90260-3.10.1016/1359-0197(88)90260-3Search in Google Scholar

8. Tripathi, S. C., Bindu, P., & Ramanujam, A. (2001). Studies on the identification of harmful radiolytic products of 30% TBP-n-dodecane-HNO3 by gas liquid chromatography. I. Formation of diluent degradation products and their role in Pu retention behavior. Separ. Sci. Technol., 36, 1463-1478. DOI: 10.1081/ SS-100103882.10.1081/SS-100103882Search in Google Scholar

9. Krishnamurthy, M. V., & Sampathkumar, R. (1992). Radiation-induced decomposition of the tributyl phosphate-nitric acid system: role of nitric acid. J. Radioanal. Nucl. Chem., 166, 421-429. DOI: 10.1007/ BF02167787.10.1007/BF02167787Search in Google Scholar

10. Tripathi, S. C., & Ramanujam, A. (2003). Effect of radiation induced physicochemical transformation on density and viscosity of 30% TBP-n-dodecane-HNO3 systems. Separ. Sci. Technol., 38, 2307-2326. DOI: 10.1081/SS-120021626.10.1081/SS-120021626Search in Google Scholar

11. Sugo, Y., Sasaki, Y., & Tachimori, S. (2002). Studies on hydrolysis and radiolysis of N,N,Nʹ,Nʺ-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim. Acta, 90, 161-165. DOI: 10.1524/ract.2002.90.3_2002.161.10.1524/ract.2002.90.3_2002.161Search in Google Scholar

12. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., & Kudo, H. (2007). Infl uence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem., 76, 794-800. DOI: 10.1016/j.radphyschem.2006.05.008.10.1016/j.radphyschem.2006.05.008Search in Google Scholar

13. Ansari, S. A., Pathak, P., Mohapatra, P. K., & Manchanda, V. K. (2012). Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev., 112, 1751-1772. DOI: 10.1021/cr200002f.10.1021/cr200002fSearch in Google Scholar

14. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Yotsuyanagi, T., & Ishigure, K. (1994). γ-Radiolysis study of concentrated nitric acid solutions. J. Chem. Soc. Faraday Trans., 90, 93-95. DOI: 10.1039/FT9949000093.10.1039/FT9949000093Search in Google Scholar

15. Savel’ev, Y. I., Ershova, Z. V., & Vladimirova, M. V. (1967). γ-Radiolysis of aqueous solutions of nitric acid. Sov. Radiochem., 9, 221-225.Search in Google Scholar

16. Kazanjian, A. R., Miner, F. J., Brown, A. K., Hagan, P. G., & Berry, J. W. (1970). Radiolysis of nitric acid solutions: L.E.T. effects. Trans. Faraday Soc., 66, 2192-2198. DOI: 10.1039/TF9706602192.10.1039/tf9706602192Search in Google Scholar

17. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., & Yoshida, Y. (1991). Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem., 95, 4435-4439. DOI: 10.1021/ j100164a050.10.1021/j100164a050Search in Google Scholar

18. Bhattacharyya, P. K., & Natarajan, P. R. (1991). Radiation chemistry of actinide solutions. In A. J. Freeman, & C. Keller (Eds.), Handbook on the physics chemistry of the actinides (Chapter 13). Amsterdam: Elsevier.Search in Google Scholar

19. Nagaishi, R. (2001). A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem., 60, 369-375. DOI: 10.1016/S0969-806X(00)00410-2.10.1016/S0969-806X(00)00410-2Search in Google Scholar

20. Taylor, J. R. (1996). An introduction to error analysis: The study of uncertainties in physical measurements. 2nd ed. Sausalito: Univ. Science Books.Search in Google Scholar

21. Geist, A. (2010). Extraction of nitric acid into alcohol: Kerosene mixtures. Solvent Extr. Ion Exch., 28, 596-607. DOI: 10.1080/07366299.2010.499286.10.1080/07366299.2010.499286Search in Google Scholar

22. Nash, K. L., & Lumetta, G. J. (2011). Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Cambridge: Woodhead Publishing Limited.10.1533/9780857092274Search in Google Scholar

23. Aksenenko, V. M., Murav’ev, N. S., & Taranenko, G. S. (1986). Raman scattering study of nitric acid solutions. J. Appl. Spectrosc., 44, 87-91. DOI: 10.1007/ BF00658324.10.1007/BF00658324Search in Google Scholar

24. Maddigapu, P. R., Minero, C., Maurino, V., Vione, D., Brigante, M., Charbouillot, T., Sarakha, M., & Mailhot, G. (2011). Photochemical and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution. Photochem. Photobiol. Sci., 10, 601-609. DOI: 10.1039/c0pp00311e.10.1039/c0pp00311e21264431Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo