1. bookVolume 60 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Identification of irradiated dried fruits using EPR spectroscopy

Published Online: 25 Sep 2015
Volume & Issue: Volume 60 (2015) - Issue 3 (September 2015)
Page range: 627 - 631
Received: 03 Nov 2014
Accepted: 20 May 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The dominating carbohydrates in fruits are monosaccharides like fructose, glucose, sorbose and mannose. In dehydrated fruits, concentration of monosaccharides is higher than in fresh fruits resulting in the formation of sugar crystallites. In most of dried fruits, crystalline fructose, and glucose dominate and appear in proportion near to 1:1. Irradiation of dried fruits stimulates radiation chemical processes resulting in the formation of new chemical products and free radicals giving rise to multicomponent EPR signal which can be detected for a long period of time. For that reason, it is used as a marker for the detection of radiation treatment of dried fruits. It has been found that EPR spectra recorded in dried banana, pineapple, papaya, and fig samples resemble the EPR spectrum obtained by computer addition of fructose and glucose spectra taken in proportion 1:1. The decay of radiation induced EPR signals proceeds in dried fruits fast during the first month of observation and becomes much slower and almost negligible after prolonged storage. However, it remains intense enough for EPR detection even one year after processing. The radiation induced EPR signal is easily detected in dried fruits exposed to 0.5 kGy of gamma rays. Thus, the EPR method of the detection of irradiated fruits can be used for the control of dried fruits undergoing quarantine treatment with 200-300 Gy of ionizing radiation.

Keywords

1. Commoner, B., Townsed, J., & Pake, G. E. (1954). Agricultural research under review. Nature, 174, 663-665.10.1038/174663a0Search in Google Scholar

2. Dood, N. J. F., Swallow, A. J., & Ley, F. J. (1985). Use of ESR to identify irradiated food. Radiat. Phys. Chem., 26, 451-453.10.1016/0146-5724(85)90234-1Search in Google Scholar

3. Raffi , J., Agnel, J. -P., Buscarlet, L. A., & Martin, C. C. (1988). Electron spin resonance identification of irradiated strawberries. J. Chem. Soc., Faraday Trans., 1, 84, 3359-3362.10.1039/f19888403359Search in Google Scholar

4. Raffi , J., & Agnel, J. -P. (1989). Electron spin resonance identifi cation of irradiated fruits. Radiat. Phys. Chem., 34(6), 891-894.Search in Google Scholar

5. Raffi , J., Stachowicz, W., Migdał, W., Barabassy, S., Kalman, B., Yordanov, N., Andrade, E., Prost, M., & Callens, F. (1998). Establishment of an eastern network of laboratories for identifi cation of irradiated foodstuffs. Final Report of Copernicus Concerned Action. CCE. (CIPA-CT94-0134).Search in Google Scholar

6. Raffi , J., Stevenson, M. H., Kent, M., Thiery, J. M., & Belliardo, J. -J. (1992). European intercomparison on electron spin resonance identifi cation of irradiated foodstuffs. Int. J. Food Sci. Technol., 27, 111-124.10.1111/j.1365-2621.1992.tb01186.xSearch in Google Scholar

7. Joint FAO/IAEA/WHO Study Group. (1999). High- -dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Geneva: World Health Organization.Search in Google Scholar

8. Linke, B., Ammon, J., Ballin, U., Brockmann, R., Brunner, J., Delincee, H., Eisen, S., Eming, D., Eschelbach, H., Estendorfer-Rinner, S., Fienitz, B., Frohmut, G., Helle, N., Holstein, K., Jonas, K., Krolls, W., Kuhn, T., Kruspe, W., Marchioni, E., Meier, W., Pford, J., Schleich, C., Stewart, E., Trapp, C., Vreden, N., Wiezorek, C., Bogl, K. W., & Schreiber, G. A. (1996). Elektronenspinresonanzspektro-skopische Untersuchungen zur Identifi zierungbestrahlter getrockneter und trischer Fruchte: Durchführung eines Ringversuches an getrockneten Feigen und Mangos sowie an frischen Erdbeeren. Berlin: Bundesinstitut für gesundheitlichen Verbrau-cherschutz und Veterinärmedizin. (BgW - Hette 03/1996).Search in Google Scholar

9. EN 13708:2003: Foodstuffs - Detection of irradiated food containing crystalline sugar by ESR spectroscopy. Brussels: European Committee for Standardisation (CEN).Search in Google Scholar

10. Vanhaelewyn, G., Jansen, B., Callens, F. J., & Sagstuen, E. (2004). ENDOR - Assisted study of the stable EPR spectrum of X-irradiated α-L-Sorbose single crystals: MLCFA and simulation decomposition analyses. Radiat. Res., 162, 96-104.10.1667/RR3199Search in Google Scholar

11. Vanhaelewyn, G., Sadło, J., Callens, F., Mondelaers, W., Frenne, D., & Matthys, P. (2000). A decomposition study of the EPR spectrum of irradiated sucrose. Appl. Radiat. Isot., 52, 1221-1227.10.1016/S0969-8043(00)00075-0Search in Google Scholar

12. Guzik, G. P., Stachowicz, W., & Michalik, J. (2008). Study on stable radicals produced by ionising radiation in dried fruits and related sugars by electron paramagnetic resonance spectrometry and photostimulated luminescence method I. D-fructose. Nukleonika, 53(Suppl. 2), S89-S94.Search in Google Scholar

13. Guzik, G. P., & Stachowicz, W. (2013). Study on radicals giving rise to multicomponent EMR spectra in dried fruits exposed to ionizing radiation II. D(+) Glucose. Nukleonika, 58(3), 425-428.Search in Google Scholar

14. The physicochemical guide. The group work in Polish. (1974). Warsaw: Wydawnictwa Naukowo-Techniczne WNT.Search in Google Scholar

15. Von Sonntag, C., & Schuchmann, H. -P. (2001). Studies in physical and theoretical chemistry: Carbohydrates. In Radiation chemistry: Present status and future trends (pp. 481-511). Elsevier Science.Search in Google Scholar

16. Tabner, B. J., & Tabner, V. A. (1991). An electron spin resonance study of gamma-irradiated grapes. Radiat. Phys. Chem., 38(6), 523-531.10.1016/1359-0197(91)90077-FSearch in Google Scholar

17. Helle, N., Linke, B., Schroeiber, G. A., & Bogl, K. W. (1992). Nachweis der gamma Bestrahlung von Trockenfrüchten. Bundesgesundheitsblatt, 35, 179-184. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo