1. bookVolume 18 (2018): Issue 2 (April 2018)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

A Novel Marker Based Method to Teeth Alignment in MRI

Published Online: 04 Apr 2018
Volume & Issue: Volume 18 (2018) - Issue 2 (April 2018)
Page range: 79 - 85
Received: 20 Nov 2017
Accepted: 21 Mar 2018
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

Keywords

[1] Rohner, D., Jaquiéry, C., Kunz, C., Bucher, P., Maas, H., Hammer, B. (2003). Maxillofacial reconstruction with prefabricated osseous free flaps: A 3-year experience with 24 patients. Plastic and Reconstructive Surgery, 112 (3), 748-757.10.1097/01.PRS.0000069709.89719.79Search in Google Scholar

[2] Plooij, J.M., Maal, T.J., Haers, P., Borstlap, W.A., Kuijpers-Jagtman, A.M., Bergé, S.J. (2011). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. International Journal of Oral and Maxillofacial Surgery, 40 (4), 341-352.10.1016/j.ijom.2010.10.013Search in Google Scholar

[3] Jones, S. (1929). Radiography and pronunciation. British Journal of Radiology, 2 (15), 149-56.10.1259/0007-1285-2-15-149Search in Google Scholar

[4] Scheier, M. (1897). Die Anwendung der Röntgen-strahlen für die Physiologie der Stimme und Sprache. Deutsche Medizinische Wochenschrift, 23 (25), 403.10.1055/s-0029-1205046Search in Google Scholar

[5] Vampola, T., Horáček, J., Laukkanen, A.M., Švec, J.G. (2015). Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logopedics Phoniatrics Vocology, 40 (1), 14-23.10.3109/14015439.2013.775333Search in Google Scholar

[6] Sovijärvi, A. (1938). Die gehaltenen, geflüsterten und gesungenen vokale und nasale der Finnischen sprache - physiologisch-physikalische lautanalysen. Helsinki: Annales Academie Scientiarum Fennicae; German text.Search in Google Scholar

[7] Lingala, S.G., Sutton, B.P., Miquel, M.E., Nayak, K.S. (2016). Recommendations for real-time speech MRI. Journal of Magnetic Resonance Imaging, 43 (1), 28-44.10.1002/jmri.24997Search in Google Scholar

[8] Baer, T., Gore, J.C., Boyce, S., Nye, P.W. (1987). Application of MRI to the analysis of speech production. Magnetic Resonance Imaging, 5 (1), 1-7.10.1016/0730-725X(87)90477-2Search in Google Scholar

[9] Scott, A.D., Wylezinska, M., Birch, M.J., Miquel, M.E. (2014). Speech MRI: Morphology and function. Physica Medica: European Journal of Medical Physics, 30 (6), 604-618.10.1016/j.ejmp.2014.05.001Search in Google Scholar

[10] Wakumoto, M., Masaki, S., Dang, J., Honda, K., Shimada, Y., Fujimoto, I., Nakamura, Y. (1997). Visualization of dental crown shape in an MRI-based speech production study. International Journal of Oral and Maxillofacial Surgery, 26, 189-190.10.1016/S0901-5027(97)81405-1Search in Google Scholar

[11] Hövener, J.B., Zwick, S., Leupold, J., Eisenbeiβ, A.K., Scheifele, C., Schellenberger, F., Hennig, J., Elverfeldt, D., Ludwig, U. (2012). Dental MRI: Imaging of soft and solid components without ionizing radiation. Journal of Magnetic Resonance Imaging, 36 (4), 841-846.10.1002/jmri.2371222707436Search in Google Scholar

[12] Hiraishi, K., Narabayashi, I., Fujita, O., Yamamoto, K., Sagami, A., Hisada, Y., Saika, Y., Adachi, I., Hasegawa, H. (1995). Blueberry juice: Preliminary evaluation as an oral contrast agent in gastrointestinal MR imaging. Radiology, 194 (1), 119-123.10.1148/radiology.194.1.79975377997537Search in Google Scholar

[13] Kitamura, T., Nishimoto, H., Fujimoto, I., Shimada, Y. (2011). Dental imaging using a magnetic resonance visible mouthpiece for measurement of vocal tract shape and dimensions. Acoustical Science and Technology, 32 (5), 224-227.10.1250/ast.32.224Search in Google Scholar

[14] Ng, I.W., Ono, T., Inoue-Arai, M.S., Honda, E., Kurabayashi, T., Moriyama, K. (2011). Application of MRI movie for observation of articulatory movement during a fricative/s/and a plosive/t/Tooth visualization in MRI. The Angle Orthodontist, 81 (2), 237-244.10.2319/060210-301.1892526721208075Search in Google Scholar

[15] Olt, S., Jakob, P.M. (2004). Contrast-enhanced dental MRI for visualization of the teeth and jaw. Magnetic Resonance in Medicine, 52 (1), 174-176.10.1002/mrm.2012515236382Search in Google Scholar

[16] Takemoto, H., Kitamura, T., Nishimoto, H., Honda, K. (2004). A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions. Acoustical Science and Technology, 25 (6), 468-474.10.1250/ast.25.468Search in Google Scholar

[17] Ventura, S.R., Freitas, D.R., Ramos, I.M., Tavares, J.M.R. (2014). Three-dimensional visualization of teeth by magnetic resonance imaging during speech. In Biodental Engineering II. Taylor & Francis Group, 13-17.Search in Google Scholar

[18] Ventura, S.R., Freitas, D.R., Tavares, J.M.R. (2009). Application of MRI and biomedical engineering in speech production study. Computer Methods in Biomechanics and Biomedical Engineering, 12 (6), 671-681.10.1080/1025584090286563319418317Search in Google Scholar

[19] Idiyatullin, D., Corum, C., Moeller, S., Prasad, H.S., Garwood, M., Nixdorf, D.R. (2011). Dental magnetic resonance imaging: Making the invisible visible. Journal of Endodontics, 37 (6), 745-752.10.1016/j.joen.2011.02.022314601921787482Search in Google Scholar

[20] Traser, L., Flügge, T.V., Burdumy, M., Kamberger, R., Richter, B., Hassepass, F., Korvink, J.G., Echternach, M. (2015). A comparison of different methods to generate tooth surface models without applying ionizing radiation for digital 3-dimensional image fusion with magnetic resonance imaging–based data of the head and neck region. Journal of Computer Assisted Tomography, 39 (6), 882-889.10.1097/RCT.000000000000029326295193Search in Google Scholar

[21] Sicherer, S.H., Sampson, H.A. (2006). Food allergy. Journal of Allergy and Clinical Immunology, 117 (2), S470-S475.10.1016/j.jaci.2005.05.04816455349Search in Google Scholar

[22] Weiger, M., Pruessmann, K.P., Bracher, A.K., Köhler, S., Lehmann, V., Wolfram, U., Hennel, F., Rasche, V. (2012). High-resolution ZTE imaging of human teeth. NMR in Biomedicine, 25 (10), 1144-1151.10.1002/nbm.278322290744Search in Google Scholar

[23] Ender, A., Mehl, A. (2013). Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109 (2), 121-128.10.1016/S0022-3913(13)60028-1Search in Google Scholar

[24] Eggert, D.W., Lorusso, A., Fisher, R.B. (1997). Estimating 3-D rigid body transformations: A comparison of four major algorithms. Machine Vision and Applications, 9 (5-6), 272-290.10.1007/s001380050048Search in Google Scholar

[25] Aalto, D., Aaltonen, O., Happonen, R.P., Jääsaari, P., Kivelä, A., Kuortti, J., Luukinen, J.M., Malinen, J., Murtola, T., Parkkola, R., Saunavaara, J., Soukka, T., Vainio, M. (2014). Large scale data acquisition of simultaneous MRI and speech. Applied Acoustics, 83, 64-75.10.1016/j.apacoust.2014.03.003Search in Google Scholar

[26] Ojalammi, A., Malinen, J. (2017). Automated segmentation of upper airways from MRI - vocal tract geometry extraction. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies – Volume 2: Bioimaging. Setúbal, Portugal: SciTePress, 77-84.10.5220/0006138300770084Search in Google Scholar

[27] Athanasiou, A.E., Van der Meij, A.J.W. (1995). Posteroanterior (frontal) cephalometry. In Orthodontic Cephalometry. Mosby-Wolfe, 141-161.Search in Google Scholar

[28] Lorensen, W.E., Cline, H.E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH '87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 163-169.10.1145/37401.37422Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo