1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 806 - 815
Received: 20 Mar 2017
Accepted: 29 Nov 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

Keywords

[1] MEGAW H.D., Nature, 155 (1945), 484.10.1038/155484b0Search in Google Scholar

[2] HAN H., VOISIN C., FRITSCH S.G., DUFOUR P., TENAILLEAU C., TURNER C., NINO J.C., J. Appl. Phys., 113 (2013), 024102.10.1063/1.4774099Search in Google Scholar

[3] HAN H., GHOSH D., JONES J.L., NINO J.C., J. Am. Ceram. Soc., 96 (2013), 485.10.1111/jace.12051Search in Google Scholar

[4] JIAN G., ZHOU D., YANG J., SHAO H., XUE F., FU Q., J. Eur. Ceram. Soc., 33 (2013), 1155.10.1016/j.jeurceramsoc.2012.11.012Search in Google Scholar

[5] KAY H.F., VOUSDEN P., Philos. Mag., 40 (1949), 1019.10.1080/14786444908561371Search in Google Scholar

[6] CAO W.Q., XU L.F., ISMAIL M.M., HUANG L.L., Mater. Sci.-Poland, 34 (2016), 322.10.1515/msp-2016-0065Search in Google Scholar

[7] WEI X., YAO X., Mater. Sci. Eng. B-Adv., 99 (2003), 74.10.1016/S0921-5107(02)00423-3Search in Google Scholar

[8] ZHANG L.H., WANG S.L., LIU F.H., J. Electron. Mater., 44 (2015), 3408.Search in Google Scholar

[9] DONG H., JIN D., XIE C., CHENG J., ZHOU L., CHEN J., Mater. Lett., 135 (2014), 83.10.1016/j.matlet.2014.03.008Open DOISearch in Google Scholar

[10] LI Y., QU Y., Mater. Res. Bull., 44 (2009), 82.10.1002/crat.200800235Search in Google Scholar

[11] PAHUJA P., KOTNALA R.K., TANDON R.P., J. Alloy Compd., 617 (2014), 140.10.1016/j.jallcom.2014.07.204Search in Google Scholar

[12] HERNER S.B., SELMI F.A., VARADAN V.V., VARADAN V.K., Mater. Lett., 15 (1993), 317.10.1016/0167-577X(93)90087-EOpen DOISearch in Google Scholar

[13] LIANG X., MENG Z., WU W., J. Am. Ceram. Soc., 87 (2004), 2218.10.1111/j.1151-2916.2004.tb07494.xSearch in Google Scholar

[14] ZHANG J., ZHAI J., CHOU X., YAO X., Mater. Chem. Phys., 111 (2008), 409.10.1016/j.matchemphys.2008.04.050Search in Google Scholar

[15] ZHANG C., QU Y., T. Nonferr. Metal. Soc., 22 (2012), 2742.10.1016/S1003-6326(11)61527-6Search in Google Scholar

[16] KISHI H., MIZUNO Y., CHAZONO H.,Jpn. J. Appl. Phys., 42 (2003), 1.10.1143/JJAP.42.1Search in Google Scholar

[17] ZHANG C., LING Z., JIAN G., J. Mater. Sci.-Mater. El., 27 (2016), 11770.10.1007/s10854-016-5316-5Open DOISearch in Google Scholar

[18] LU D.Y., SUN X.Y., TODA M., J. Phys. Chem. Solids, 68 (2007), 650.10.1016/j.jpcs.2007.02.018Open DOISearch in Google Scholar

[19] TSUR Y., DUNBAR T.D., RANDALL C.A., J. Electroceram., 7 (2001), 25.10.1023/A:1012218826733Search in Google Scholar

[20] LI W., QI J., WANG Y., LI L., GUI Z., Mater. Lett., 57 (2002), 1.10.1016/S0167-577X(02)00687-0Open DOISearch in Google Scholar

[21] MORRISON F.D., SINCLAIR D.C., SKAKLE J.M.S., WEST A.R., J. Am. Ceram. Soc., 81 (1998), 1957.10.1111/j.1151-2916.1998.tb02575.xSearch in Google Scholar

[22] MORRISON F.D., SINCLAIR D.C., WEST A.R., J. App. Phys., 86 (1999), 6355.10.1063/1.371698Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo