1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Electrical properties and Mott parameters of polycrystalline diamond films synthesized by HF CVD method from hydrogen/methanol gas mixture

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 830 - 837
Received: 20 Apr 2017
Accepted: 21 Nov 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The influence of diamond crystallinity and preferred orientation on electronic conductivity of synthetic diamond films grown by hot filament chemical vapor deposition (HFCVD) was investigated. The CVD diamond films of different morphologies and crystallite sizes varying from 36 nm to 67 nm, measured in h2 2 0i direction were considered. The charge transport mechanism in the diamond samples was studied using temperature dependent DC conductivity measurements. The obtained results showed that in the temperature range of 90 K to 300 K charge transport is realized via Variable Range Hopping (VRH, m = 1/4) mechanism. Using VRH model, the Mott parameters were evaluated i.e. density of states at Fermi level N(EF) (0.22 × 1015 eV-1·cm-3 to 1.7 × 1015 eV-1·cm-3), hopping energy W (43.5 meV to 142.3 meV) and average hopping distance R (1.49 × 10-5cm to 2.56 × 10-5cm). It was shown that above mentioned parameters strongly depend on diamond film preferential orientation.

Keywords

[1] BALLUTAUD D., JOMARD F., KOCINIEWSKI T., RZEPKA E., GIRARD H., SAADA S., Diam. Relat. Mater., 17 (2008), 451.10.1016/j.diamond.2007.09.006Open DOISearch in Google Scholar

[2] STARYGA E., BA˛K G.W., Diam. Relat. Mater., 14 (2005), 23.10.1016/j.diamond.2004.06.030Open DOISearch in Google Scholar

[3] MIYAJIMA Y., TISON Y., GIUSCA C., STOLOJAN V., WATANABE H., HABUCHI H., HENLEY S., SHANNON J., SILVA S., Carbon, 49 (2011), 5229.10.1016/j.carbon.2011.07.040Search in Google Scholar

[4] ROBERTSON J., Mat. Sci. Eng. R, 37 (2002), 129.10.1016/S0927-796X(02)00005-0Search in Google Scholar

[5] LANDSTRASS M., RAVI K., Appl. Phys. Lett., 55 (1989), 1391.10.1063/1.101604Search in Google Scholar

[6] LIU F., WANG J., LIU B., LI X., CHEN D., Diam. Relat. Mater., 16 (2007), 454.10.1016/j.diamond.2006.08.016Open DOISearch in Google Scholar

[7] KAWARADA H., SASAKI H., SATO A., Phys. Rev. B, 52 (1995), 11351.10.1103/PhysRevB.52.11351Open DOISearch in Google Scholar

[8] HAYASHI K., YAMANAKA S., WATANABE H., SEKIGUCHI T., OKUSHI H., KAJIMURA K., J. Appl. Phys., 81 (1997), 744.10.1063/1.364299Search in Google Scholar

[9] HOFFMAN A., AKHVLEDIANI R., Diam. Relat. Mater., 14 (2005), 646. 10.1016/j.diamond.2004.09.003Open DOISearch in Google Scholar

[10] GAN B., AHN J., RUSLI, ZHANG Q., YOON S., LIGATCHEV V., YU J., CHEW K., HUANG Q.-F., J. Appl. Phys., 89 (2001), 5747.10.1063/1.1360222Search in Google Scholar

[11] OLIVEIRA DE J., BERENGUE O., MORO J., FERREIRA N., CHIQUITO A., BALDAN M., Appl. Surf. Sci., 311 (2014), 5.10.1016/j.apsusc.2014.04.161Search in Google Scholar

[12] KOPYLOV P., LOTONOV A., APOLONSKAYA I., OBRAZTSOV A., Mosc. U. Phys. B+., 64 (2009), 161.10.3103/S0027134909020131Search in Google Scholar

[13] TRAJKOV E., PRAWER S., Diam. Relat. Mater., 15 (2006), 1714.10.1016/j.diamond.2006.02.004Search in Google Scholar

[14] BASKIN E., REZNIK A., SAADA D., ADLER J., KALISH R., Phys. Rev. B, 64 (2001), 224110.10.1103/PhysRevB.64.224110Search in Google Scholar

[15] RODRIGUES A.M., Appl. Surf. Sci., 253 (2007), 5992.10.1016/j.apsusc.2006.12.111Search in Google Scholar

[16] KAWARADA H., Surf. Sci. Rep., 26 (1996), 205.10.1016/S0167-5729(97)80002-7Open DOISearch in Google Scholar

[17] YE H., JACKMAN R.B., HING P., J. Appl. Phys., 94 (2003), 7878.10.1063/1.1622998Open DOISearch in Google Scholar

[18] RUSU D.I., RUSU G.G., LUCA D., Acta Phys. Pol. A, 119 (2011), 850.10.12693/APhysPolA.119.850Search in Google Scholar

[19] KUO C.T., LIN C.R., LIEN H.M., Thin Solid Films, 290 - 291 (1996), 254.10.1016/S0040-6090(96)09016-5Search in Google Scholar

[20] SHARMA G., SANGODKAR S., ROY M., Synth. Met., 75 (1995), 201.10.1016/0379-6779(96)80009-9Search in Google Scholar

[21] GODET C., Philos. Mag. B, 81 (2001), 205.10.1080/13642810108216536Search in Google Scholar

[22] GODET C., Diam. Relat. Mater., 12 (2003), 159.10.1016/S0925-9635(03)00017-7Open DOISearch in Google Scholar

[23] NIU L., ZHU J.Q., HAN X., TAN M.L., GAO W., DU S.Y., Phys. Lett. A, 373 (2009), 2494.10.1016/j.physleta.2009.05.008Search in Google Scholar

[24] MOTT N., DAVIS E., Electronic Process in Noncrystalline Materials, Clarendon Press, Oxford, 1979.Search in Google Scholar

[25] KUMAR A., SINGH R.K., SINGH H.K., SRIVASTAVA P., SINGH R., J. Appl. Phys., 115 (2014), 103702.10.1063/1.4868088Search in Google Scholar

[26] LANDSTRASS M.I., RAVI K.V., Appl. Phys. Lett., 55 (1989), 1391.10.1063/1.101604Search in Google Scholar

[27] MORI Y., EIMORI N., HATTA A., ITO T., HIRAKI A., Jpn. J. Appl. Phys., 31 (1992), L1718.10.1143/JJAP.31.L1718Search in Google Scholar

[28] WERNER M., DORSCH O., HINZE A., OBERMEIER E., HARPER R., JOHNSTON C., CHALKER P., BUCKLEY-GOLDER I., Diam. Relat. Mater., 2 (1993), 825.10.1016/0925-9635(93)90232-QOpen DOISearch in Google Scholar

[29] PAPROCKI K., FABISIAK K., DYCHALSKA A., SZYBOWICZ M., DUDKOWIAK A., ISKALIYEVA A., Appl. Phys. A-Mater., 123 (2017), 300.10.1007/s00339-017-0899-0Search in Google Scholar

[30] PAPROCKI K., FABISIAK K., BOGDANOWICZ R., GOŁU´NSKI Ł., STARYGA E., SZYBOWICZ M., KOWALSKA M., BANASZAK-PIECHOWSKA A., J. Mater. Sci., 52 (2017), 10119.10.1007/s10853-017-1217-0Open DOISearch in Google Scholar

[31] MANCIU F.S., MANCIU M., DURRER W.G., SALAZAR J.G., LEE K.H., BENNET K.E., J. Mater. Sci., 49 (2014), 5782.10.1007/s10853-014-8309-x419910125328245Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo