1. bookVolume 35 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

FESEM, XRD and DRS studies of electrochemically deposited boron doped ZnO films

Published Online: 20 Mar 2018
Volume & Issue: Volume 35 (2017) - Issue 4 (December 2017)
Page range: 824 - 829
Received: 28 Mar 2017
Accepted: 08 Oct 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this study, the effect of boron (B) incorporation into zinc oxide (ZnO) has been investigated. The undoped, 2 at.%. and 4 at.% B doped ZnO films were deposited on p-type silicon (Si) substrates by electrodeposition method using chronoamperometry technique. Electrochemical depositions were performed by applying a constant potentiostatic voltage of 1.1 V for 180 min at 90 °C bath temperature. To analyze the surface morphology, field emission scanning electron microscopy (FESEM) was used and the results revealed that while a small amount of boron resulted in smoother surface, a little more incorporation of boron changed the surface morphology to dandelion-like shaped rods on the whole surface. By using X-ray diffraction (XRD) analysis, the crystal structures of the films were detected and the preferred orientation of the ZnO, which exhibited polycrystalline and hexagonal wurtzite structure, changed with B doping. For the estimation of the optical band gap of obtained films, UV-Vis diffuse reflectance spectra (DRS) of the films were taken at room temperature and these data were applied to the Kubelka-Munk function. The optical band gap of ZnO narrowed due to incorporation of B, which was confirmed by red-shift.

Keywords

[1] PEKSU E., KARAAGAC H., J. Nanomater., 2015 (2015), 16012.10.1155/2015/516012Search in Google Scholar

[2] CAGLAR M., GORGUN K., J. Nanoelectron. Optoelectron., 11 (2016), 769.10.1166/jno.2016.1966Search in Google Scholar

[3] XIONG C., YAO R., Optik, 126 (2015), 1951.10.1016/j.ijleo.2015.05.035Search in Google Scholar

[4] CAGLAR Y., ARSLAN A., ILICAN S., HUR E., AKSOY S., CAGLAR M., J. Alloy. Compd., 574 (2013), 104.10.1016/j.jallcom.2013.04.013Search in Google Scholar

[5] RUZGAR S., AKSOY S., J. Mater. Electron. Devices, 1 (2015), 38.Search in Google Scholar

[6] CAGLAR Y., CAGLAR M., ILICAN S., AKSOY S., YAKUPHANOGLU F., J. Alloy. Compd., 621 (2015), 189.10.1016/j.jallcom.2014.09.190Search in Google Scholar

[7] YE W., DENG J., WANG X., CUI L., Appl. Surf. Sci., 390 (2016), 831.10.1016/j.apsusc.2016.08.153Search in Google Scholar

[8] MAZIARZ W., RYDOSZ A., WYSOCKA K., PISARKIEWICZ T., Mater. Sci.-Poland, 32 (2014), 176.10.2478/s13536-013-0186-5Search in Google Scholar

[9] ATES T., TATAR C., YAKUPHANOGLU F., Sensor. Actuat. A-Phys., 190 (2013) 153.10.1016/j.sna.2012.11.031Search in Google Scholar

[10] KERLI S., ALVER U., TANRIVERDI A., AVAR B., Crystallogr. Rep., 60 (2015), 946.10.1134/S1063774515060139Search in Google Scholar

[11] YU C.C., HSU Y.T., LEE S.Y., LAN W.H., KUO H.H., SHIH M.C., FENG D.J.Y., HUANG K.F., Jpn. J. Appl. Phys., 52 (2013), 1.10.1007/s00340-013-5386-5Open DOISearch in Google Scholar

[12] GANDLA S., GOLLU S. R., SHARMA R., SARANGI V., GUPTA D., Appl. Phys. Lett., 107 (2015), 152102.10.1063/1.4933304Search in Google Scholar

[13] CAGLAR M., ILICAN S., CAGLAR Y., YAKUPHANOGLU F., J. Alloy. Compd., 509 (2011), 3177.10.1016/j.jallcom.2010.12.038Search in Google Scholar

[14] ILICAN S., YAKUPHANOGLU F., CAGLAR M., CAGLAR Y., J. Alloy. Compd., 509 (2011), 5290.10.1016/j.jallcom.2011.01.122Search in Google Scholar

[15] IZAKI M., KATAYAMA J., J. Electrochem. Soc., 147 (2000), 210.10.1149/1.1393176Search in Google Scholar

[16] ISHIZAKI H., IMAIZUMI M., MATSUDA S., IZAKI M., ITO T., Thin Solid Films, 411 (2002), 65.10.1016/S0040-6090(02)00189-XSearch in Google Scholar

[17] CALNAN S., RIEDEL W., GLEDHILL S., STANNOWSKI B., STEINER L.M.C., SCHLATMANN R., Thin Solid Films, 594 (2015), 215.10.1016/j.tsf.2015.05.051Search in Google Scholar

[18] TSIN F., THOMERE A., BRIS A.L., COLLIN S., LINCOT D., ROUSSET J., ACS Appl. Mater. Inter., 8 (2016), 12298.10.1021/acsami.6b0299827111517Search in Google Scholar

[19] BARRET C.S., MASSALSKI T.B., Structure of Metals, Pergamon Press, Oxford, 1980.Search in Google Scholar

[20] PAWAR B.N., JADKAR S.R., TAKWALE M.G., J. Phys. Chem. Solids, 66 (2005), 1779.10.1016/j.jpcs.2005.08.086Search in Google Scholar

[21] CULLITY B.D., STOCK S.R., Elements of X-ray Diffraction, 2nd Ed., Prentice-Hall, Inc., New Jersey, 2001.Search in Google Scholar

[22] MAO C., FANG L., ZHANG H., LI W., WU F., QIN G., RUAN H., KONG C., J. Alloy. Compd., 676 (2016), 135.10.1016/j.jallcom.2016.03.157Search in Google Scholar

[23] SENOL S.D., OZTURK O., TERZIOGLU C., Ceram. Int., 41 (2015), 11194.10.1016/j.ceramint.2015.05.069Search in Google Scholar

[24] TSAY C.-Y., HSU W.-T., Ceram. Int., 39 (2013), 7425.10.1016/j.ceramint.2013.02.086Search in Google Scholar

[25] GAUDON M., TOULEMONDE O., DEMOURGUES A., Inorg. Chem., 46 (2007), 10996.10.1021/ic701157j18004842Search in Google Scholar

[26] MURPHY A.B., Sol. Energ. Mat. Sol. C., 91 (2007), 1326.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo