1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

A model of the response of GMR of metallic multilayers to external magnetic field

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 835 - 840
Received: 22 Feb 2015
Accepted: 23 Aug 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

It has not been possible to transform resistivity models in terms of magnetic field in order to account for variation of giant magnetoresistance (GMR) with external magnetic field, which would have led to determination of material properties. This problem is approached mathematically via variation calculus to arrive at an exponential function that fits observed GMR values. Using this model in free electron approximation, the mean Fermi vector, susceptibility and total density of states of a number of metallic multilayers are determined from their reported GMR values. Susceptibility is found to depend on interface roughness and antiferromagnetic (AF) coupling; thus, it gives qualitative measure of interface quality and AF coupling. Comparison of susceptibilities and GMRs of electrodeposited and ion beam sputtered Co/Cu structures shows that a rough interface suppresses GMR in the former but enhances it in the latter.

Keywords

[1] Camley R.E., Barnas J., Phys. Rev. Lett., 63 (1989), 664.10.1103/PhysRevLett.63.664Search in Google Scholar

[2] Valet T., Fert A., Phys. Rev. B, 48 (1993), 7099.10.1103/PhysRevB.48.7099Search in Google Scholar

[3] Barnas J., Fuss A., Camley R.E., Grunberg P., Zinn W., Phys. Rev. B, 42 (1990), 8110.10.1103/PhysRevB.42.8110Search in Google Scholar

[4] Zhang S., Levy P.M., J. Appl. Phys., 69 (1991), 4786.10.1063/1.348229Search in Google Scholar

[5] Camblong H.E., Phys. Rev. B, 51 (1995), 1855.10.1103/PhysRevB.51.1855Search in Google Scholar

[6] Barnas J., Bruynseraede Y., Phy. Rev. B, 53 (1996), 5449.10.1103/PhysRevB.53.5449Search in Google Scholar

[7] Wilson A.H., P. Roy. Soc. A-Math. Phy., 167 (1938), 580.10.1098/rspa.1938.0156Search in Google Scholar

[8] Goodings D.A., Phys. Rev., 132 (1963), 542.10.1103/PhysRev.132.542Search in Google Scholar

[9] Baibich M.N., Broto J.M., Fert A., Dau Van N.F., Petroff F., Eitenne P., Creuzet G., Friederich A., Chazelas J., Phys. Rev. Lett., 61 (1988), 2472.10.1103/PhysRevLett.61.2472Search in Google Scholar

[10] Animalu A.O.E., Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, New Jersey, 1977.Search in Google Scholar

[11] Kashiwabara S., Jyoko Y., Hayashi Y., Physica B, 239 (1997), 47.10.1016/S0921-4526(97)00374-8Search in Google Scholar

[12] Ono T., Shigeto K., Shinjo T., Physica B, 239 (1997), 41.10.1016/S0921-4526(97)00373-6Search in Google Scholar

[13] Oomi G., Sakai T., Uwatoko Y., Takanashi K., Fujimori H., Physica B, 239 (1997), 19.10.1016/S0921-4526(97)00369-4Search in Google Scholar

[14] Binasch G., Grunberg P., Saurenbach F., Zinn W., Phys. Rev. B, 39 (1989), 4828.10.1103/PhysRevB.39.48289948867Search in Google Scholar

[15] Uba J.I., Ekpunobi A.J., Ekwo P.I., Afr. Rev. Phys., 9 (0043) (2014), 339.Search in Google Scholar

[16] Edwards D.M., Mathon J., Muniz R.B., Phan M.S., Phys. Rev. Lett., 67 (1991), 493.10.1103/PhysRevLett.67.49310044908Search in Google Scholar

[17] Fullerton E.E., Kelly D.M., Guimpel J., Schuller I.K., Phys. Rev. Lett., 68 (1992), 859.10.1103/PhysRevLett.68.85910046011Search in Google Scholar

[18] Belien P., Schad R., Potter C.D., Verbanck G., Moshchalkov V.V., Bruynseraede Y., Phys. Rev. B, 50 (1994), 9957.10.1103/PhysRevB.50.99579975078Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo