1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Solvothermal synthesis and magnetic properties of β-Co2P nanorods

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 312 - 316
Received: 25 May 2014
Accepted: 11 Feb 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Hexagonal high temperature phase β-Co2P nanorods with a diameter of around 50 nm were synthesized via a mild solvothermal route. The reaction was carried out at 180 °C using cobalt chloride hexahydrate (CoCl2 · 6H2O) as Co source and yellow phosphorous as P source. The composition, structure as well as morphology were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM). The magnetic susceptibility curve indicates that the β-Co2P nanorods show canted antiferromagnetic state, different from the paramagnetic state of orthorhombic low temperature phase β-Co2P.

Keywords

[1] SCHNERING VON H.G., HONLE W., Encyclopedia of Inorganic Chemistry, John Wiley&Sons, Chichester, U.K., 1994, p. 3106.Search in Google Scholar

[2] ARONSSON B., LANDSTROM T., RURDQUIST S., BORIDES, Silicides and Phosphides, Wiley, New York, 1965.Search in Google Scholar

[3] BROCK S.L., PERERA S.C., STAMM K.L., Chem.-Eur. J., 10 (2004), 3364.10.1002/chem.200305775Search in Google Scholar

[4] ISHIDA K., NISHIZAWA T., Bull. Alloy Phase Diagr., 11 (1990), 555.10.1007/BF02841716Search in Google Scholar

[5] JEITSCHKO W., FLÖRKE U., SCHOLZ U.D., J. Solid State Chem., 52 (1984), 320.10.1016/0022-4596(84)90015-XSearch in Google Scholar

[6] ELLNER M., MITTEMEIJER E.J., Z. Anorg. Allg. Chem., 627 (2001), 2257.10.1002/1521-3749(200109)627:9<2257::AID-ZAAC2257>3.0.CO;2-WSearch in Google Scholar

[7] STINNER C., PRINS R., WEBER TH., J. Catal., 202 (2001), 187.10.1006/jcat.2001.3283Search in Google Scholar

[8] BAILER J.C., EMELIUS H.J., NYHOLM R., TROTMAN-DICKENSON A.F., Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1973.Search in Google Scholar

[9] WARZER VAN J.R., Phosphorus and Its Compounds, Interscience, New York, 1958.Search in Google Scholar

[10] BONNEAU P. R., JARRIS R.F., KANER R.B., Nature, 349 (1991), 510.10.1038/349510a0Search in Google Scholar

[11] PARKIN I.P., Chem. Soc. Rev., 25 (1996), 199.10.1039/cs9962500199Search in Google Scholar

[12] GOPALAKRISHNAN J., PANDEY S., RANGAN K.K., Chem. Mater., 9 (1997), 2113.10.1021/cm970175gSearch in Google Scholar

[13] LUKEHART C.M., MILNE S.B., STOCK S.R., Chem. Mater., 10 (1998), 903.10.1021/cm970673pSearch in Google Scholar

[14] XIE Y., SU H.L., QIAN X.F., LIU X.M., QIAN Y.T., J. Solid State Chem., 149 (2000), 88.10.1006/jssc.1999.8499Search in Google Scholar

[15] ZHANG H.T., HA D.H., HOVDEN R., KOURKOUTIS L.F., ROBINSON R.D., Nano Lett., 11 (2011), 188.10.1021/nl103400a21141992Search in Google Scholar

[16] CARENCO S., DEMANGE M., SHI J., BOISSI`E RE C., SANCHEZ C., FLOCH P. L., M´E ZAILLES N., Chem. Commun., 46 (2010), 5578.10.1039/c0cc00684j20577676Search in Google Scholar

[17] YU S.H., YANG J., WU Y.S., HAN Z.H., SHU L., XIE Y., QIAN Y.T., J. Mater. Res., 13 (1998), 3365.10.1557/JMR.1998.0457Search in Google Scholar

[18] LUO F., SU H.L., SONG W., WANG Z.M., YAN Z.G., YAN C.H., J. Mater. Chem., 14 (2004), 111.10.1039/b303594hSearch in Google Scholar

[19] TRENTLER T.J., HICKMAN K.M., GOEL S.C., VIANO A.M., GIBBONS P.C., BRUHO W.E., Science, 270 (1995), 1791.10.1126/science.270.5243.1791Search in Google Scholar

[20] FUJII H., KOMURA S., TAKEDA T., OKAMOTO T., ITO Y., AKIMISTSU J., J. Phys. Soc. Jpn., 51 (1979), 1616.10.1143/JPSJ.46.1616Search in Google Scholar

[21] JCPDS Card Files 32-0306. Joint Committee on Powder Diffraction Standards, Swarthmore, PA. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo