Open Access

Kinematic diffusion approach to describe recharge phenomena in unsaturated fractured chalk


Cite

Barhoum, S., Valdfies, D., Gufierin, R., Marlin, C., Vitale, Q., Benmamar, J., Gombert, P., 2014. Spatial heterogeneity of high-resolution Chalk groundwater geochemistry - Underground quarry at Saint Martin-le-Noeud. Journal of Hydrology, 519, Part A, 756–768.10.1016/j.jhydrol.2014.08.001Search in Google Scholar

Beven, K., 1982. On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows. Water Resources Research, 18, 6, 1627–1633.10.1029/WR018i006p01627Search in Google Scholar

Brouyère, S., Dassargues, A., Hallet, V., 2004. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. J. Contam. Hydrol., 72, 1–4, 135–64.10.1016/j.jconhyd.2003.10.009Search in Google Scholar

Brutsaert, W., 2005. Hydrology an Introduction. Cambridge University Press, New York.10.1017/CBO9780511808470Search in Google Scholar

Charbeneau, R.J., 1984. Kinematic models for soil moisture and solute transport. Water Resources Research, 20, 6, 699–706.10.1029/WR020i006p00699Search in Google Scholar

Charbeneau, R.J., Weaver, J.W., Smith, V.J., 1989. Kinematic modelling of multiphase solute transport in the vadose zone. EPA Report EPA/600/2-89/035, R.S.K. Environmental Research Laboratory, US Environmental Protection Agency, Ada, OK, 1588 p.Search in Google Scholar

Crampon, N., Roux, J.C., Bracq, P., 1993. Hydrogéologie de la craie en France. Hydrogéologie, 2, 81–123.Search in Google Scholar

Crank, J., 1956. Mathematics of Diffusion. Oxford University Press, New York, London.Search in Google Scholar

Dahan, O., Nativ, R., Adara, E.M., Berkowitz, B., Ronen, Z., 1999. Field observation of flow in a fracture intersecting unsaturated chalk. Water Resour. Res., 35, 11, 3315–3326.10.1029/1999WR900198Search in Google Scholar

Downing, R.A., Pearson, F.J., Smith, D.B., 1979. The flow mechanism in the Chalk based on radio-isotope analyses of groundwater in the London Basin. Journal of Hydrology, 40, 1–2, 67–83.10.1016/0022-1694(79)90088-XSearch in Google Scholar

Foster, S.S.D., 1975. The Chalk groundwater tritium anomaly – a possible explanation. Journal of Hydrology, 25, 159–165.10.1016/0022-1694(75)90045-1Search in Google Scholar

Germann, P., Beven, K., 1985. Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resources Research, 21, 990–996.10.1029/WR021i007p00990Search in Google Scholar

Germann, P., Beven, K., 1986. A distribution function approach to waterflow in soil macropores based on kinematic wave theory. Journal of Hydrology, 83, 173–183.10.1016/0022-1694(86)90191-5Search in Google Scholar

Ireson, A.M., Butler, A.P., 2011. Controls on preferential recharge to Chalk aquifers. J. Hydrol., 398, 109–123.10.1016/j.jhydrol.2010.12.015Search in Google Scholar

Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., Jarvis, N., 2005. An improved dual permeability model of water flow and solute transport in the vadose zone. Vadose Zone Journal, 4, 398–406.10.2136/vzj2004.0137Search in Google Scholar

Lighthill M.J., Whitham, G.B., 1955. On kinematic waves: 1. Flood movement in long rivers. Proceedings Royal Society London, Series A, 229, 281–316.10.1098/rspa.1955.0088Search in Google Scholar

Nicholl, M.J., Glass, R.J., Wheatcraft, S.W., 1994. Gravity-driven infiltration instability in initially dry nonhorizontal fractures. Water Resour. Res., 30, 9, 2533–2546.10.1029/94WR00164Search in Google Scholar

Nimmo, J.R., 2010. Theory for source-responsive and free-surface film modeling of unsaturated flow. Vadose Zone J., 9, 2, 295–306. DOI: 10.2136/vzj2009.0085.10.2136/vzj2009.0085Search in Google Scholar

Nimmo, J.R., Mitchell, L., 2013. Predicting vertically nonsequential wetting patterns with a source-responsive model. Vadose Zone J., 12, 4. DOI: 10.2136/vzj2013.03.0054.10.2136/vzj2013.03.0054Search in Google Scholar

Nimmo, J.R., Malek-Mohammadi, S., 2015. Quantifying water flow and retention in an unsaturated fracture-facial domain. In: Faybishenko, B., Benson, S.M., Gale, J.E. (Eds.): Fluid Dynamics in Complex Fractured-Porous Systems. American Geophysical Union, Washington, pp. 5–17. DOI: 10.1002/9781118877517.ch12.10.1002/9781118877517.ch12Search in Google Scholar

Price, M., Low, R.G., McCann, C., 2000. Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer. J. Hydrology, 233, 1–4, 54–71. DOI: 10.1016/S0022-1694(00)00222-5.10.1016/S0022-1694(00)00222-5Search in Google Scholar

Qin, Z., 2014. An Unsaturated Zone Flux Study in a Highly-fractured Bedrock Area: Ground Water Recharge Processes at the Masser Recharge Site, East-central Pennsylvania. Master's Thesis. Paper 4512. San José State University, San José, CA. http://scholarworks.sjsu.edu/etd_theses/4512Search in Google Scholar

Rasmussen, T.C., 2001. Pressure wave vs. tracer velocities through unsaturated fractured rock. In: Evans, D.D., Nicholson, T.J., Rasmussen, T.C. (Eds.): Flow and Transport through Unsaturated Fractured Rock. 2nd Ed. Geophysical Monograph 42, American Geophysical Union, Washington, DC, pp. 45–52.10.1029/GM042p0045Search in Google Scholar

Rasmussen, T.C., Baldwin Jr, R.H., Dowd, J.F., Williams, A.G., 2000. Tracer vs. pressure wave velocities through unsaturated saprolite. Soil Science Society of America Journal, 64, 1, 75–85.10.2136/sssaj2000.64175xSearch in Google Scholar

Reeves, M.J., 1979. Recharge and pollution of the English Chalk: some possible mechanisms. Eng. Geol., 14, 231–240.10.1016/0013-7952(79)90065-6Search in Google Scholar

Roux, J.C., Tirat, M., 1967. Carte de la surface piezometrique de la nappe de la craie en Picardie. Bureau de Recherches Geologiques et Minieres, Service Geologique Regional Picardie Normandie.Search in Google Scholar

Scheurer, O., 2000. Atlas Agriculture environnement de l’Oise Relations spatiales entre sensibilité des sols et activité agricole. Institut Supérieur d’Agriculture de Beauvais, Beauvais, 41 p. http://www.sols-et-territoires.org/bibliographie/applicationsthematiques/?L=0Search in Google Scholar

Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272, 14–35.10.1016/S0022-1694(02)00252-4Search in Google Scholar

Singh, V.P., 1997. Kinematic Wave Modeling in Water Resources, Environmental Hydrology. John Wiley, New York.Search in Google Scholar

Singh, V.P., 2002. Is hydrology kinematic? Hydrological Processes, 16, 667–716. DOI: 10.1002/hyp.306.10.1002/hyp.306Search in Google Scholar

Sisson, F.B., Ferguson, A.H., van Genuchten, M.T., 1980. Simple method for predicting drainage from field plots. Soil Sci. Soc. Am. J., 44, 1147–1152.10.2136/sssaj1980.03615995004400060004xSearch in Google Scholar

Smith, R.E., 1983. Approximate soil water movement by kinematic characteristics. Soil Sci. Soc. Am. J., 47, 3–8.10.2136/sssaj1983.03615995004700010001xSearch in Google Scholar

Su, G.W., Geller, J.T., Pruess, K., Wen, F., 1999. Experimental studies of water seepage and intermittent flow in unsaturated, rough-walled fractures. Water Resour. Res., 35, 4, 1019–1037.10.1029/1998WR900127Search in Google Scholar

Tokunaga, T.K., Wan, J., 1997. Water film flow along fracture surfaces of porous rock. Water Resour. Res., 33, 6, 1287–1295.10.1029/97WR00473Search in Google Scholar

Valdes, D., Dupont, J., Laignel, B., Slimani, S., Delbart, C., 2014. Infiltration processes in karstic chalk investigated through a spatial analysis of the geochemical properties of the groundwater: The effect of the superficial layer of claywith-flints. Journal of Hydrology, 519, 23–33.10.1016/j.jhydrol.2014.07.002Search in Google Scholar

Van den Daele, G.F.A., Barker, J.A., Connell, L.D., Atkinson, T.C., Darling, W.G., Cooper, J.D., 2007. Unsaturated flow and solute transport through the Chalk: Tracer test and dual permeability modelling. J. Hydrol., 342, 1–2, 157–172. DOI: 10.1016/j.jhydrol.2007.05.021.10.1016/j.jhydrol.2007.05.021Search in Google Scholar

White, R.E., 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci., 3, 95–120.10.1007/978-1-4612-5090-6_3Search in Google Scholar

Yamada, T., Kobayashi, M., 1988. Kinematic wave characteristics and new equations of unsaturated infiltration. Journal of Hydrology, 102, 257–266.10.1016/0022-1694(88)90101-1Search in Google Scholar

Yang, T., 2000. Some recent results on compressible flow with vacuum. Taiwanese Journal of Mathematics, 4, 1, 33–44.10.11650/twjm/1500407196Search in Google Scholar

Yang, Y., Endreny, T.A., 2013. Watershed hydrograph model based on surface flow diffusion. Water Resources Research, 49, 507–516.10.1029/2012WR012186Search in Google Scholar

Zghibi, A., Chenini, I., Zouhri, L., Merzougui, A., Tarhouni, J., 2015. Modelling of tracer movement with advectiondispersion scheme at the LaSalle Beauvais experimental site, Beauvais, France. J. Hydrogeol. Hydrol. Eng., 4, 3. http://dx.doi.org/10.4172/2325-9647.100012610.4172/2325-9647.1000126Search in Google Scholar

Zouhri, L., Lutz, P., 2010. A comparison of peak and plate electrodes in electrical resistivity tomography: application to the chalky groundwater of the Beauvais aquifer (northern part of the Paris basin, France). Hydrol. Process., 24, 3040–3052.10.1002/hyp.7719Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other