Cite

1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.10.1097/00003246-200107000-0000211445675Search in Google Scholar

2. Mariansdatter SE, Eiset AH, Søgaard KK, Christiansen CF. Differences in reported sepsis incidence according to study design: a literature review. BMC Med Res Methodol. 2016;16:137. doi: 10.1186/s12874-016-0237-9.10.1186/s12874-016-0237-9506283327733132Search in Google Scholar

3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244–50.10.1097/01.CCM.0000261890.41311.E917414736Search in Google Scholar

4. Zhang L, Zhu G, Han L, Fu P. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Med Res Methodol. 2015;13:71. doi: 10.1186/s12916-015-0312-9.10.1186/s12916-015-0312-9439361025885654Search in Google Scholar

5. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10:701–6.10.1586/eri.12.50348842322734959Search in Google Scholar

6. Donadello K, Scolletta S, Covajes C, et al. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.10.1186/1741-7015-10-2327554522221662Search in Google Scholar

7. Sankar V, Webster NR. Clinical application of sepsis biomarkers. J Anesth. 2013;27:269-83.10.1007/s00540-012-1502-723108494Search in Google Scholar

8. Szederjesi J, Almasy E, Lazar A, et al. An evaluation of serum procalcitonin and C-reactive protein levels as diagnostic and prognostic biomarkers of severe sepsis. J Crit Care Med. 2015;1:147-53.10.1515/jccm-2015-0022595329529967823Search in Google Scholar

9. Liu X, Ren H, Peng D. Sepsis biomarkers: an omics perspective. Front Med. 2014;8:58-67.10.1007/s11684-014-0318-2708892124481820Search in Google Scholar

10. Stanilova SA. Functional relevance of IL-10 promoter polymorphisms for sepsis development. Crit Care. 2010;14:119. doi: 10.1186/cc8839.10.1186/cc8839287551020236506Search in Google Scholar

11. Deasy A, Read RC. Genetic variation in pro-inflammatory cytokines and meningococcal sepsis. Curr Opin Infect Dis. 2010;23:255–8.10.1097/QCO.0b013e32833939deSearch in Google Scholar

12. Wong HR. Genetics and genomics in pediatric septic shock. Crit Care Med. 2012;40:1618–26.10.1097/CCM.0b013e318246b546332964222511139Search in Google Scholar

13. Namath A, Patterson AJ. Genetic polymorphisms in sepsis. Crit Care Clin. 2009;25:835–56.10.1016/j.ccc.2009.06.00419892256Search in Google Scholar

14. Jabandziev P, Smerek M, Michalek J, et al. Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Critical Care. 2014;18:R1. doi: 10.1186/cc13174.10.1186/cc13174405644124383711Search in Google Scholar

15. Chauhan M, McGuire W. Interleukin-6 (-174C) polymorphism and the risk of sepsis in very low birth weight infants: meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2008;93: F427-29. doi: 10.1136/adc.2007.134205.10.1136/adc.2007.13420518375611Search in Google Scholar

16. Teuffel O, Ethier MC, Beyene J, Sung L. Association between tumor necrosis factor-alpha promoter -308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: a systematic review and meta-analysis. Crit Care Med. 2010;38:276-82.10.1097/CCM.0b013e3181b42af019789454Search in Google Scholar

17. Tiancha H, Huiqin W, Jiyong J, et al. Association between lymphotoxin-alpha intron +252 polymorphism and sepsis: a meta-analysis. Scand J Infect Dis. 2011;43:436-47.10.3109/00365548.2011.56252821366408Search in Google Scholar

18. Angus DC, Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.10.1097/00003246-200107000-0000211445675Search in Google Scholar

19. Surbatovic M, Veljovic M, Jevdjic J, Popovic N, Djordjevic D, Radakovic S. Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediators Inflamm. 2013;2013:362793. doi: 10.1155/2013/362793.10.1155/2013/362793385915924371374Search in Google Scholar

20. Kothari N, Bogra J, Abbas H, et al. Tumor Necrosis Factor gene polymorphism results in high TNF level in sepsis and septic shock. Cytokine. 2013;61:676–81.10.1016/j.cyto.2012.11.01623317877Search in Google Scholar

21. Jeremic V, Tamara Alempijevic T, Srdan Mijatovic S, et al. Clinical relevance of IL-6 gene polymorphism in severely injured patients. Bosn J Basic Med Sci. 2014;14:110-7.10.17305/bjbms.2014.2274433395224856384Search in Google Scholar

22. Allam G, Alsulaimani AA, Alzaharani AK, Nasr A. Neonatal infections in Saudi Arabia: Association with cytokine gene Polymorphisms. Centr Eur J Immunol. 2015;40:68-77.10.5114/ceji.2015.50836447254226155186Search in Google Scholar

23. Baghel K, Srivastava RN, Chandra A, et al. TNF-α, IL-6, and IL-8 Cytokines and Their Association with TNF-α-308 G/A Polymorphism and Postoperative Sepsis. J Gastrointest Surg. 2014;18:1486–94.10.1007/s11605-014-2574-524944154Search in Google Scholar

24. Feng B, Mao ZR, Pang K, Zhang SI, Li L. Association of tumor necrosis factor α −308G/A and interleukin-6 −174G/C gene polymorphism with pneumonia-induced sepsis. J Crit Care. 2015;30:920-2.10.1016/j.jcrc.2015.04.12326025100Search in Google Scholar

25. Gao JW, Zhang AQ, Pan W, Yue CI, Zeng L, Gu W, Jiang J. Association between IL-6-174G/C Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta Analysis. PloS One. 2015;10:e0118843. doi: 10.1371/journal.pone.0118843.10.1371/journal.pone.0118843434848025734339Search in Google Scholar

26. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013;50:23-36.10.3109/10408363.2013.764490361396223480440Search in Google Scholar

27. Uusitalo-Seppala R, Koskinen P, Leino A, et al. Early detection of severe sepsis in the emergency room: diagnostic value of plasma C-reactive protein, procalcitonin, and interleukin-6. Scand J Infect Dis. 2011;43:883–90.10.3109/00365548.2011.60032521892899Search in Google Scholar

28. Miguel-Bayarri V, Casanoves-Laparra EB, Pallas-Beneyto L, Sancho-Chinesta S, Martin-Osorio LF, et al. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Med Intensiva. 2012;36:556–62.10.1016/j.medin.2012.01.01422495097Search in Google Scholar

29. Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C reactive protein for survival in postoperative patients with severe sepsis. J Crit Care. 2011;26:54–64.10.1016/j.jcrc.2010.04.01120646905Search in Google Scholar

30. Palmiere C, Augsburger M. Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J. 2014;55:103–14.10.3325/cmj.2014.55.103400971124778096Search in Google Scholar

31. Fishman D, Faulds G, Jeffery R et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;1:1369-76.10.1172/JCI26295089849769329Search in Google Scholar

32. Kilpinen S, Hulkkonen J, Wang XY, Hurme M. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw. 2001;12:62-8.Search in Google Scholar

33. Georgescu AM, Banescu C, Badea I, et al. IL-6 gene polymorphisms and sepsis in ICU adult Romanian patients: a prospective study. Rev Romana Med Lab. 2017; 25. doi: 10.1515/rrlm-2016-0044.10.1515/rrlm-2016-0044Search in Google Scholar

34. Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med. 2006;4:10. doi:10.1186/1741-7015-4-10.10.1186/1741-7015-4-10151339016611358Search in Google Scholar

35. Ahrens P, Kattner E, Kohler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004;55:652-6.10.1203/01.PDR.0000112100.61253.8514739370Search in Google Scholar

36. Martin-Loeches I, Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Borderias L, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38:256–62.10.1007/s00134-011-2406-y22113815Search in Google Scholar

37. Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Blanquer J, Aspa J, et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Respir Med. 2010;104:440–7.10.1016/j.rmed.2009.10.00919900796Search in Google Scholar

38. Davis SM, Clark EAS, Nelson LT, Silver RM. The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol. 2010;202:308.e301–308.e308.10.1016/j.ajog.2010.01.00620207250Search in Google Scholar

39. Carregaro F, Carta A, Cordeiro JA, Lobo SM, Tajara EH, et al. Polymorphisms IL10–819 and TLR-2 are potentially associated with sepsis in brazilian patients. Mem Inst Oswaldo Cruz. 2010;105:649–56.10.1590/S0074-02762010000500008Search in Google Scholar

40. Shalhub S, Junker CE, Imahara SD, Mindrinos MN, Dissanaike S, et al. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma. 2009;66:115–22.10.1097/TA.0b013e3181938d50274063219131814Search in Google Scholar

41. Cesur S, Sengui A, Kurtoglu Y, et al. Prognostic value of cytokines (TNF-α, IL-10, Leptin) and C-reactive protein serum levels in adult patients with nosocomial sepsis. J Microb Infect Dis. 2011;1:101-9.10.5799/ahinjs.02.2011.03.0024Search in Google Scholar

42. Zeng L, Gu W, Chen K, et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Crit Care. 2009,13:R188. doi:10.1186/cc8182.10.1186/cc8182281191719939284Search in Google Scholar

43. Surbatovic M, Grujic K, Cikota B, et al. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. J Crit Care. 2010;25,542.e1–542.e8.Search in Google Scholar

44. Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med. 2006;32:260–6.10.1007/s00134-005-0022-416435103Search in Google Scholar

45. Ouyang L, Lv YD, Hou C, Wu GB, He ZH. Quantitative analysis of the association between interleukin-10 1082A/G polymorphism and susceptibility to sepsis. Mol Biol Rep. 2013;40:4327–32.10.1007/s11033-013-2520-823716201Search in Google Scholar

46. Pan W, Zhang AQ, Yue CL, et al. Association between interleukin-10 polymorphisms and sepsis: a meta-analysis. Epidemiol Infect. 2015;143:366–75.10.1017/S095026881400070325497741Search in Google Scholar

47. Cardoso CP, de Oliveira AJ, Botoni FA, et al. Interleukin-10 rs2227307 and CXCR2 rs1126579 polymorphisms modulate the predisposition to septic shock. Mem Inst Oswaldo Cruz. 2015;110:453-60.10.1590/0074-02760150003450140726038959Search in Google Scholar

48. Accardo Palumbo A, Forte GI, Pileri D, et al. Analysis of IL-6, IL-10 and IL-17 genetic polymorphisms as risk factors for sepsis development in burned patients. Burns. 2012;38:208-13.10.1016/j.burns.2011.07.02222079540Search in Google Scholar

49. Kofoed K, Andersen O, Kronborg G, et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38.10.1186/cc5723220645617362525Search in Google Scholar

50. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–32.10.1001/archinte.162.9.102811996613Search in Google Scholar

51. Wang H, Wei Y, Zeng Y, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15:123.10.1186/s12881-014-0123-4441169625394369Search in Google Scholar

52. Schlüter B, Raufhake C, Erren M, et al. Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med. 2002;30:32-7.10.1097/00003246-200201000-0000511902285Search in Google Scholar

53. Oku R, Oda S, Nakada TA, et al. Differential pattern of cell-surface and soluble TREM 1 between sepsis and SIRS. Cytokine. 2013;61:112–7.10.1016/j.cyto.2012.09.00323046618Search in Google Scholar

54. Su L, Han B, Liu C, et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis. 2012;12:157. doi: 10.1186/1471-2334-12-157.10.1186/1471-2334-12-157342647522809118Search in Google Scholar

55. Su L, Liu C, Li C, et al. Dynamic Changes in Serum Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) and its Gene Polymorphisms are Associated with Sepsis Prognosis. Inflammation. 2012;35:1833-43.10.1007/s10753-012-9504-z22798017Search in Google Scholar

56. Peng LS, Li J, Zhou GS, Deng LH, Yao HG. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and septic shock in a Chinese Han population. World J Emerg Med. 2015;6:123-30.10.5847/wjem.j.1920-8642.2015.02.007445847226056543Search in Google Scholar

57. Chen QX, Zhou HD, Wu SJ, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol. 2008;69:220–26.10.1016/j.humimm.2008.01.01318396215Search in Google Scholar

58. Lemari J, Barraud D, Gibot S. Host response biomarkers in sepsis: overview on sTREM-1 detection. Methods Mol Biol. 2015;1237:225-39.10.1007/978-1-4939-1776-1_1725319790Search in Google Scholar

59. Dimopoulou I, Pelekanou A, Mavrou I, et al. Early serum levels of soluble triggering receptor expressed on myeloid cells–1 in septic patients: Correlation with monocyte gene expression. J Crit Care. 2012;27:294–300.10.1016/j.jcrc.2011.06.01321855288Search in Google Scholar

60. Masson S, Caironi P, Spanuth E, et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care. 2014, 18:R6. doi: 10.1186/cc13183.10.1186/cc13183405604624393424Search in Google Scholar

61. Endo S, Suzuki Y, Takahashi G, et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother. 2012;18:891-7.10.1007/s10156-012-0435-222692596Search in Google Scholar

62. Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234-8.10.1007/s10156-005-0400-416258819Search in Google Scholar

63. Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412:2157–61.10.1016/j.cca.2011.07.02421839732Search in Google Scholar

64. Zhang AQ, Yue CI, Gu W, Du J, Wang HY, Jiang J. Association between CD14 Promoter -159C/T Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta-Analysis. PLoS One. 2013;8:e71237. doi: 10.1371/journal.pone.0071237.10.1371/journal.pone.0071237374717123990939Search in Google Scholar

65. Lorente L, Martin MM, Borreguero-Leon JM, et al. The 4G/4G Genotype of PAI-1 Polymorphism Is Associated with Higher Plasma PAI-1 Concentrations and Mortality in Patients with Severe Sepsis. PLoS One. 2015;10:e0129565. doi: 10.1371/journal.pone.0129565.10.1371/journal.pone.0129565446625226066833Search in Google Scholar

66. Madách K, Aladzsity I, Szilágyi A, et al. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care. 2010;14:R79. doi: 10.1186/cc8992.10.1186/cc8992288720220429897Search in Google Scholar

67. Perés Wingeyer SD, Cunto ER, Nogueras CM, San Juan JA, Gomez N, de Larrañaga GF. Biomarkers in sepsis at time zero: intensive care unit scores, plasma measurements and polymorphisms in Argentina. J Infect Dev Ctries. 2012;6:555–62.10.3855/jidc.210822842942Search in Google Scholar

68. Andersen O, Eugen-Olsen J, Kafoed K, et al. Soluble urokinase plasminogen activator receptor is a marker of dysmetabolism in HIV-infected patients receiving highly active antiretroviral therapy. J Med Virol.2008;80:209-16.10.1002/jmv.2111418098145Search in Google Scholar

69. Eugen-Olsen J, Andersen O, Linneberg A, et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med. 2010;268:296-308.10.1111/j.1365-2796.2010.02252.x20561148Search in Google Scholar

70. Backes Y, van der Sluijs Koenraad F, Mackie DP, et al. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med. 2012;38:1418-28.10.1007/s00134-012-2613-1342356822706919Search in Google Scholar

71. Park YJ, Liu G, Tsuruta Y, et al. Participation of the urokinase receptor in neutrophil efferocytosis. Blood. 2009;114:860-70.10.1182/blood-2008-12-193524271602319398720Search in Google Scholar

72. Wiersinga WJ, Kager LM, Hovius JW, et al. Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis. J Immunol. 2010;184:3079-86.10.4049/jimmunol.090100820142364Search in Google Scholar

73. Koch A, Voigt S, Kruschinski C, et al. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care. 2011;15:R63. doi: 10.1186/cc10037.10.1186/cc10037322199621324198Search in Google Scholar

74. Georgescu AM, Szederjesi J, Dobreanu M, et al. Soluble urokinase-type plasminogen activator receptor (suPAR) – a possible biomarker for bacteremia in sepsis. Rev Romana Med Lab. 2015;23:59-73.Search in Google Scholar

75. Donadello K, Scolletta S, Covajes C, Vincent JL. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.10.1186/1741-7015-10-2327554522221662Search in Google Scholar

76. De Kruif MD, Lemaire LC, Giebelen IA, et al. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34:518-22.10.1007/s00134-007-0955-x224469918080111Search in Google Scholar

77. Huttunen R, Syrjanen J, Vuento R, et al. Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteraemia: a prospective cohort study. J Intern Med. 2011;270:32-40.10.1111/j.1365-2796.2011.02363.x21332843Search in Google Scholar

78. Koch A, Tacke F. Why high suPAR is not super-diagnostic, prognostic and potential pathogenic properties of a novel biomarker in the ICU. Crit Care. 2011;15:1020. doi: 10.1186/cc10577.10.1186/cc10577338868822182777Search in Google Scholar

79. Molkanen T, Ruotsalainen E, Thorball CW, et al. Elevated soluble urokinase plasminogen activator receptor (suPAR) predicts mortality in Staphilococcus aureus bacteraemia. Eur J Clin Microbiol Infect Dis. 2011;30:1417-24.10.1007/s10096-011-1236-821479972Search in Google Scholar

80. Kafoed K, Eugen-Olsen J, Petersen J, et al. Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. Eur J Clin Microbiol Infect Dis. 2008;27:375-83.10.1007/s10096-007-0447-518197443Search in Google Scholar

81. Walley KR, Russell JA. Protein C –1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med. 2007;35:12-7.10.1097/01.CCM.0000249823.44726.4E17080006Search in Google Scholar

82. Skibstead S, Bhasin MK, Aird WC, Shapiro NI. Bench-to-bedside review: Future novel diagnostics for sepsis – a systems biology approach. Critical Care. 2013;17:231. doi: 10.1186/cc12693.10.1186/cc12693405746724093155Search in Google Scholar

eISSN:
2393-1817
Language:
English