Cite

1. Ament W., J.R. Huizenga, E. Kort, T.W. van der Mark, R.G. Grevink, G.J. Verkerke (1999) Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int. J. Sports Med., 20(2): 71-77. DOI: 10.1055/s-2007-971096.10.1055/s-2007-971096Search in Google Scholar

2. Banister E.W., M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge, B.J.C. Mutch (1997) The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur. J. Appl. Physiol., 51: 195-202. DOI: 10.1007/BF00455182.10.1007/BF00455182Search in Google Scholar

3. Billat V.L., A. Demarle, J. Slawinski, M. Paiva, J.P. Koralsztein (2001) Physical and training characteristics of the top-class marathon runners. Med. Sci. Sports Exerc., 33(12): 2089-2097.10.1097/00005768-200112000-00018Search in Google Scholar

4. Degoutte F., P. Jouanel, E. Filaire (2003) Energy demands during a judo match and recovery. Br. J. Sports Med., 37: 245-249. DOI: 10.1136/bjsm.37.3.245.10.1136/bjsm.37.3.245Search in Google Scholar

5. Dudley G.A., R.L. Terjung (1985) Influence of aerobic metabolism on IMP accumulation in fast-twitch muscle. Am. J. Physiol., 248: C37-C42.Search in Google Scholar

6. Duffield R., B. Dawson (2003) Energy system contribution in track running. New Stud. Athlet., 18(4): 47-56.Search in Google Scholar

7. Duffield R., B. Dawson, C. Goodman (2004) Energy system contribution to 100-m and 200-m track running events. J. Sci. Med. Sport, 7(3): 302-313. DOI: 10.1016/S1440-2440(04)80025-2.10.1016/S1440-2440(04)80025-2Search in Google Scholar

8. Duffield R., B. Dawson, C. Goodman (2005) Energy system contribution to 1500- and 3000-metre track running. J. Sports Sci., 23(10): 993-1002. DOI: 10.1080/02640410400021963.10.1080/0264041040002196316194976Search in Google Scholar

9. Ferri A., S. Adamo, A. La Torre, M. Marzorati, D.J. Bishop, G. Miserocchi (2012) Determinants of performance in 1,500-m runners. Eur. J. Appl. Physiol., 112: 3033-3043. DOI: 10.1007/s00421-011-2251-2.10.1007/s00421-011-2251-222179856Search in Google Scholar

10. Finsterer J. (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord., 13: 218. DOI: 10.1186/1471-2474-13-218.10.1186/1471-2474-13-218353447923136874Search in Google Scholar

11. Gorostiaga E.M., I. Navarro-Amézqueta, J.A.L. Calbet, L. Sánchez-Medina, R. Cusso, M. Guerrero, et al. (2014) Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J. Strength Cond. Res., 28(10): 2775-2785. DOI: 10.1519/JSC.0000000000000496.10.1519/JSC.000000000000049624736776Search in Google Scholar

12. Graham T.E., L.P. Turcotte, B. Kiens, E.A. Richter (1997) Effect of endurance training on ammonia and amino acid metabolism in humans. Med. Sci. Sports Exerc., 29: 646-653.Search in Google Scholar

13. Green J.M., J.H. Hornsby, R.C. Pritchett, K. Pritchett (2014) Lactate threshold comparison in anaerobic vs aerobic athletes and untrained participants. Int. J. Exerc. Sci., 7(4): 329-338.Search in Google Scholar

14. Hancock C.R., E. Janssen, R.L. Terjung (2006) Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. J. Appl. Physiol., 100: 406-413. DOI: 10.1152/japplphysiol.00885.2005.10.1152/japplphysiol.00885.200516195390Search in Google Scholar

15. MacRae H.H., T.D. Noakes, S.C. Dennis (1995) Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise. Pflugers Arch., 430(6): 964-970.10.1007/BF018374108594549Search in Google Scholar

16. Mutch B.J., E.W. Banister (1983) Ammonia metabolism in exercise and fatigue: a review. Med. Sci. Sports Exerc., 15(1): 41-50.Search in Google Scholar

17. Nybo L., M.K. Dalsgaard, A. Steensberg, K. Møller, N.H. Secher (2005) Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J. Physiol., 563(Pt 1): 285-290. DOI: 10.1113/jphysiol.2004.075838.10.1113/jphysiol.2004.075838166555815611036Search in Google Scholar

18. Ogino K., T. Kinugawa, S. Osaki, M. Kato, A. Endoh, Y. Furuse, K. Uchida, M. Shimoyama, O. Igawa, I. Hisatome, C. Shigemasa (2000) Ammonia response to constant exercise: differences to the lactate response. Clin. Exp. Pharmacol. Physiol., 27(8): 612-617. DOI: 10.1046/j.1440-1681.2000.03312.x.10.1046/j.1440-1681.2000.03312.x10901391Search in Google Scholar

19. Philp A., A.L. Macdonald, P.W. Watt (2005) Lactate – a signal coordinating cell and systemic function. J. Exp. Biol., 208: 4561-4575. DOI: 10.1242/jeb.01961.10.1242/jeb.0196116326938Search in Google Scholar

20. Ravier G., B. Dugué, F. Grappe, J.D. Rouillon (2006) Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int. J. Sports Med., 10: 810-817.10.1055/s-2005-87296516586323Search in Google Scholar

21. Sahlin K., M. Tonkonogi, K. Söderlund (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol., 80(5): 417-422.10.1007/s00421005061310502075Search in Google Scholar

22. Schumacker Y.O., P. Mueller (2002) The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med. Sci. Sports Exerc., 34: 1029-1036. DOI: 10.1097/00005768-200206000-00020.10.1097/00005768-200206000-0002012048333Search in Google Scholar

23. Snow R.J., M.F. Carey, C.G. Stathis, M.A. Febbraio, C.G. Hargreaves (2000) Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J. Appl. Physiol., 88: 1576-1580.Search in Google Scholar

24. Sola-Penna M. (2008) Metabolic regulation by lactate. IUBMB Life, 60(9): 605-608. DOI: 10.1002/iub.97.10.1002/iub.9718506840Search in Google Scholar

25. Spencer M.R., P.B. Gastin (2001) Energy system contribution during 200- to 1500-m running in highly trained athletes. Med. Sci. Sports Exerc., 33(1): 157-162. DOI: 10.1097/00005768-20010100000024.Search in Google Scholar

26. Terjung R.L, P.C. Tullson (1992) Ammonia metabolism during exercise. In: Lamb D.R. and C.V. Gisolfi (eds.) Energy Metabolism in Exercise and Sport. Dubuque, IA: Brown Search in Google Scholar

[ Benchmark, pp. 235-268.Search in Google Scholar

27. Wilkinson D.J., N.J. Smeeton, P.W. Watt (2010) Ammonia metabolism, the brain and fatigue, revisiting the link. Prog. Neurobiol., 91: 200-219. DOI: 10.1016/j.pneurobio.2010.01.012.10.1016/j.pneurobio.2010.01.01220138956Search in Google Scholar

28. Yuan Y., R. So, S. Wong, K.M. Chan (2002) Ammonia threshold – comparison to lactate threshold, correlation to other physiological parameters and response to training. Scand. J. Med. Sci. Sports, 12: 358-364. DOI: 10.1034/j.1600-0838.2002.00185.x.10.1034/j.1600-0838.2002.00185.x12453163Search in Google Scholar

29. Zieliński J., K. Kusy (2012) Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J. Appl. Physiol., 112: 542-551. DOI: 10.1152/japplphysiol.01292.2011.10.1152/japplphysiol.01292.201122162524Search in Google Scholar

30. Zieliński J., K. Kusy (2015) Hypoxanthine: A universal metabolic indicator of the training status in competitive sport. Exerc. Sport Sci. Rev., 43(4): 214-221. DOI: 10.1249/JES.0000000000000055.10.1249/JES.000000000000005526196868Search in Google Scholar

31. Zieliński J., B. Krasińska, K. Kusy (2013) Hypoxanthine as a predictor of performance in highly trained athletes. Int. J. Sports Med., 34(12): 1079-1086. DOI: 10.1055/s-0033-1337947.10.1055/s-0033-133794723670363Search in Google Scholar

32. Zieliński J., K. Kusy, T. Rychlewski (2011) Effect of training load structure on purine metabolism in middle-distance runners. Med. Sci. Sports Exerc., 43(9): 1798-807. DOI: 10.1249/MSS.0b013e318215d10b. 10.1249/MSS.0b013e318215d10b21364483Search in Google Scholar

eISSN:
2080-2234
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education