Accès libre

Blood ammonia and lactate responses to incremental exercise in highly-trained male sprinters and triathletes

, , , ,  et   
23 mars 2016
À propos de cet article

Citez
Télécharger la couverture

1. Ament W., J.R. Huizenga, E. Kort, T.W. van der Mark, R.G. Grevink, G.J. Verkerke (1999) Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int. J. Sports Med., 20(2): 71-77. DOI: 10.1055/s-2007-971096.10.1055/s-2007-971096

2. Banister E.W., M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge, B.J.C. Mutch (1997) The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur. J. Appl. Physiol., 51: 195-202. DOI: 10.1007/BF00455182.10.1007/BF00455182

3. Billat V.L., A. Demarle, J. Slawinski, M. Paiva, J.P. Koralsztein (2001) Physical and training characteristics of the top-class marathon runners. Med. Sci. Sports Exerc., 33(12): 2089-2097.10.1097/00005768-200112000-00018

4. Degoutte F., P. Jouanel, E. Filaire (2003) Energy demands during a judo match and recovery. Br. J. Sports Med., 37: 245-249. DOI: 10.1136/bjsm.37.3.245.10.1136/bjsm.37.3.245

5. Dudley G.A., R.L. Terjung (1985) Influence of aerobic metabolism on IMP accumulation in fast-twitch muscle. Am. J. Physiol., 248: C37-C42.

6. Duffield R., B. Dawson (2003) Energy system contribution in track running. New Stud. Athlet., 18(4): 47-56.

7. Duffield R., B. Dawson, C. Goodman (2004) Energy system contribution to 100-m and 200-m track running events. J. Sci. Med. Sport, 7(3): 302-313. DOI: 10.1016/S1440-2440(04)80025-2.10.1016/S1440-2440(04)80025-2

8. Duffield R., B. Dawson, C. Goodman (2005) Energy system contribution to 1500- and 3000-metre track running. J. Sports Sci., 23(10): 993-1002. DOI: 10.1080/02640410400021963.10.1080/0264041040002196316194976

9. Ferri A., S. Adamo, A. La Torre, M. Marzorati, D.J. Bishop, G. Miserocchi (2012) Determinants of performance in 1,500-m runners. Eur. J. Appl. Physiol., 112: 3033-3043. DOI: 10.1007/s00421-011-2251-2.10.1007/s00421-011-2251-222179856

10. Finsterer J. (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord., 13: 218. DOI: 10.1186/1471-2474-13-218.10.1186/1471-2474-13-218353447923136874

11. Gorostiaga E.M., I. Navarro-Amézqueta, J.A.L. Calbet, L. Sánchez-Medina, R. Cusso, M. Guerrero, et al. (2014) Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J. Strength Cond. Res., 28(10): 2775-2785. DOI: 10.1519/JSC.0000000000000496.10.1519/JSC.000000000000049624736776

12. Graham T.E., L.P. Turcotte, B. Kiens, E.A. Richter (1997) Effect of endurance training on ammonia and amino acid metabolism in humans. Med. Sci. Sports Exerc., 29: 646-653.

13. Green J.M., J.H. Hornsby, R.C. Pritchett, K. Pritchett (2014) Lactate threshold comparison in anaerobic vs aerobic athletes and untrained participants. Int. J. Exerc. Sci., 7(4): 329-338.

14. Hancock C.R., E. Janssen, R.L. Terjung (2006) Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. J. Appl. Physiol., 100: 406-413. DOI: 10.1152/japplphysiol.00885.2005.10.1152/japplphysiol.00885.200516195390

15. MacRae H.H., T.D. Noakes, S.C. Dennis (1995) Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise. Pflugers Arch., 430(6): 964-970.10.1007/BF018374108594549

16. Mutch B.J., E.W. Banister (1983) Ammonia metabolism in exercise and fatigue: a review. Med. Sci. Sports Exerc., 15(1): 41-50.

17. Nybo L., M.K. Dalsgaard, A. Steensberg, K. Møller, N.H. Secher (2005) Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J. Physiol., 563(Pt 1): 285-290. DOI: 10.1113/jphysiol.2004.075838.10.1113/jphysiol.2004.075838166555815611036

18. Ogino K., T. Kinugawa, S. Osaki, M. Kato, A. Endoh, Y. Furuse, K. Uchida, M. Shimoyama, O. Igawa, I. Hisatome, C. Shigemasa (2000) Ammonia response to constant exercise: differences to the lactate response. Clin. Exp. Pharmacol. Physiol., 27(8): 612-617. DOI: 10.1046/j.1440-1681.2000.03312.x.10.1046/j.1440-1681.2000.03312.x10901391

19. Philp A., A.L. Macdonald, P.W. Watt (2005) Lactate – a signal coordinating cell and systemic function. J. Exp. Biol., 208: 4561-4575. DOI: 10.1242/jeb.01961.10.1242/jeb.0196116326938

20. Ravier G., B. Dugué, F. Grappe, J.D. Rouillon (2006) Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int. J. Sports Med., 10: 810-817.10.1055/s-2005-87296516586323

21. Sahlin K., M. Tonkonogi, K. Söderlund (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol., 80(5): 417-422.10.1007/s00421005061310502075

22. Schumacker Y.O., P. Mueller (2002) The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med. Sci. Sports Exerc., 34: 1029-1036. DOI: 10.1097/00005768-200206000-00020.10.1097/00005768-200206000-0002012048333

23. Snow R.J., M.F. Carey, C.G. Stathis, M.A. Febbraio, C.G. Hargreaves (2000) Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J. Appl. Physiol., 88: 1576-1580.

24. Sola-Penna M. (2008) Metabolic regulation by lactate. IUBMB Life, 60(9): 605-608. DOI: 10.1002/iub.97.10.1002/iub.9718506840

25. Spencer M.R., P.B. Gastin (2001) Energy system contribution during 200- to 1500-m running in highly trained athletes. Med. Sci. Sports Exerc., 33(1): 157-162. DOI: 10.1097/00005768-20010100000024.

26. Terjung R.L, P.C. Tullson (1992) Ammonia metabolism during exercise. In: Lamb D.R. and C.V. Gisolfi (eds.) Energy Metabolism in Exercise and Sport. Dubuque, IA: Brown

[ Benchmark, pp. 235-268.Search in Google Scholar

27. Wilkinson D.J., N.J. Smeeton, P.W. Watt (2010) Ammonia metabolism, the brain and fatigue, revisiting the link. Prog. Neurobiol., 91: 200-219. DOI: 10.1016/j.pneurobio.2010.01.012.10.1016/j.pneurobio.2010.01.01220138956

28. Yuan Y., R. So, S. Wong, K.M. Chan (2002) Ammonia threshold – comparison to lactate threshold, correlation to other physiological parameters and response to training. Scand. J. Med. Sci. Sports, 12: 358-364. DOI: 10.1034/j.1600-0838.2002.00185.x.10.1034/j.1600-0838.2002.00185.x12453163

29. Zieliński J., K. Kusy (2012) Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J. Appl. Physiol., 112: 542-551. DOI: 10.1152/japplphysiol.01292.2011.10.1152/japplphysiol.01292.201122162524

30. Zieliński J., K. Kusy (2015) Hypoxanthine: A universal metabolic indicator of the training status in competitive sport. Exerc. Sport Sci. Rev., 43(4): 214-221. DOI: 10.1249/JES.0000000000000055.10.1249/JES.000000000000005526196868

31. Zieliński J., B. Krasińska, K. Kusy (2013) Hypoxanthine as a predictor of performance in highly trained athletes. Int. J. Sports Med., 34(12): 1079-1086. DOI: 10.1055/s-0033-1337947.10.1055/s-0033-133794723670363

32. Zieliński J., K. Kusy, T. Rychlewski (2011) Effect of training load structure on purine metabolism in middle-distance runners. Med. Sci. Sports Exerc., 43(9): 1798-807. DOI: 10.1249/MSS.0b013e318215d10b. 10.1249/MSS.0b013e318215d10b21364483