Open Access

Weak and Strong Superiorization: Between Feasibility-Seeking and Minimization

  
Apr 22, 2017

Cite
Download Cover

We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full edged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned by a feasibility-seeking only algorithm. We distinguish between two research directions in the superiorization methodology that nourish from the same general principle: Weak superiorization and strong superiorization and clarify their nature.

Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Mathematics, General Mathematics