Open Access

The Effects of ZnO Nanoparticles in Combination with Alcohol on Biosynthetic Potential of Saccharomyces cerevisiae


Cite

1. Aebi, H. (1984). Catalase in Vitro. In: Methods in Enzymology, 105, 121-126.Search in Google Scholar

2. Aguilar-Uscanga, B., Francois, J.M. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268-274.10.1046/j.1472-765X.2003.01394.xSearch in Google Scholar

3. Ban, D. K., Subhankar, P. (2014). Zinc Oxide Nanoparticles Modulates the Production of β-Glucosidase and Protects its Functional State Under Alcoholic Condition in Saccharomyces cerevisiae. Appl. Biochem Biotechnol., 173, 155–166. DOI 10.1007/s12010-014-0825-2.10.1007/s12010-014-0825-2Open DOISearch in Google Scholar

4. Chiseliţa, O., Usatîi, A., Taran, N., Rudic, V., Chiseliţa, N., Adajuc, V. (2010). Tulpină de drojdie Saccharomyces cerevisiae – sursă de β-glucani. Brevet de invenţie MD 4048. MD-BOPI, 6/2010.Search in Google Scholar

5. Dey P., Harborn, J. (1993). Methods in Plant Biochemistry. Carbohydr. Academic Press, 2, 529 pSearch in Google Scholar

6. Efremova, N., Usatîi, A., Molodoi, E. (2013). Metodă de determinare a activităţii catalazei. Brevet de invenţie MD 4205, MD-BOPI, 2/2013.Search in Google Scholar

7. Egorova, E., Kubatiev, A., Schvets, V. (2016). Biological Effects of Metal Nanoparticles. Springer International Publishing, 292 p. ISBN: 978-3-319-30905-7.10.1007/978-3-319-30906-4Search in Google Scholar

8. Espitia, P. J. P., Nilda de Fátima Ferreira Soares, Jane Sélia dos Reis Coimbra, Nélio José de Andrade, Renato Souza Cruz, Eber Antonio Alves Medeiros. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol., 5, 1447–1464. DOI 10.1007/s11947-012-0797-6.10.1007/s11947-012-0797-6Search in Google Scholar

9. FDA. (1997). Substances generally recognized as safe, Federal Register 62 FR 18938, April 1997Search in Google Scholar

10. Gutul, T., Rusu, E., Condur, N., Ursaki, V., Goncearenco, E., Vlazan, P. (2014). Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol., 5, 402–406. doi:10.3762/bjnano.5.47.10.3762/bjnano.5.47Search in Google Scholar

11. Kwiatkowski S., Kwiatkowski S.E. (2012). Yeast (Sacch. cerevisiae) glucan polysaccharides: occurrence, separation and application in food, feed and health industries. In: D.N. Karunaratne (ed.) The complex world of polysaccharides. Tech Publ., Rijeka, Croatia, 47-70.Search in Google Scholar

12. Liu Hong-Zhi, Qiang Wang, Yuan-Yuan Liu, and Fang Fang. (2009). Statistical optimization of culture media and conditions for production of mannan by S. cerevisiae. Biotech. and Bioprocess Engineering, 14, 577-583. DOI/10.1007/s12257-008-0248-4.10.1007/s12257-008-0248-4Open DOISearch in Google Scholar

13. Lowry, O., Rosebough, N., Farr, A. et al. (1951). Protein measurment with the folin phenol reagent. J. Biol. Chem., 193, 265-275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

14. Padrova1, K., Čejkova1, A., Cajthaml, T., Kolouchova1, I., Vitova, M., Sigler, K., Řezanka, T. (2016). Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol (Praha), 61(4), 329-335. Doi: 10.1007/s12223-015-0442-7.10.1007/s12223-015-0442-726683688Open DOISearch in Google Scholar

15. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.10.1016/j.biotechadv.2008.09.00218854209Search in Google Scholar

16. Roselli M., Finamore A., Garaguso I., Britti M. S., Mengheri E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by E. coli. J. of Nutrition, 133(12), 4077–4082.Search in Google Scholar

17. Santimano, M. C., Kowshik, M. (2013). Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria. Environ Monit Assess, 185, 7205–7214. DOI 10.1007/s10661-013-3094-6.10.1007/s10661-013-3094-623341058Open DOISearch in Google Scholar

18. Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J.of Microbiological Methods, 54(2), 177–182.10.1016/S0167-7012(03)00037-XSearch in Google Scholar

19. Sirbu, T., Maslobrod, S. N., Mirgorod, Yu. A., Borodina, V. G., Borsch, N. A., Ageeva, L. S. (2015). Influence of Dispersed Solutions of Copper, Silver, Bismuth and Zinc Oxide Nanoparticles on Growth and Catalase Activity of Penicillium funiculosum. 3rd International Conference on Nanotechnologies and Biomedical Engineering. September 23-26, 2015, Chisinau, Republic of Moldova, Volume 55 of the series IFMBE Proceedings, 55, 271-274Search in Google Scholar

20. Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn. (2004). Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. International Journal of Food Science&Technology, 39(1), 21-29.10.1111/j.1365-2621.2004.00742.xSearch in Google Scholar

21. Zechner-Krpan, V., Petravic-Tominac, V., Panjkota-Krbavicic, I., Grba, S. Berkovic, K. (2009). Potential application of yeast β-glucans in food industry, Agriculturae Conspectus Scientificus, 74(4), 277-282.Search in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology