Cite

Ademark P., Larsson M., Tjerneld F., Stålbrand H. (2001). Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb. Tech., 29: 441–448.Search in Google Scholar

Aguilar R.F., Yoshicedo J.N., Parish C.N. (2012). Ingluviotomy tube placement for lead-induced crop stasis in the California condor (Gymnogyps californianus). J. Avian Med. Surg., 26: 176–181.Search in Google Scholar

Alali W., Hofacre C., Mathis G., Faltys G. (2013). Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poultry Sci., 92: 836–841.Search in Google Scholar

Amerah A., Plumstead P., Barnard L., Kumar A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poultry Sci., 93: 906–915.Search in Google Scholar

Ao T., Cantor A., Pescatore A., Pierce J. (2008). In vitro evaluation of feed-grade enzyme activity at pH levels simulating various parts of the avian digestive tract. Anim. Feed Sci. Tech., 140: 462–468.Search in Google Scholar

Ao T., Cantor A., Pescatore A., Ford M., Pierce J., Dawson K. (2009). Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poultry Sci., 88: 111–117.Search in Google Scholar

Axelsson L., Chung T., Dobrogosz W., Lindgren S. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health D., 2: 131–136.Search in Google Scholar

Baas T., Thacker P. (1996). Impact of gastric pH on dietary enzyme activity and survivability in swine fed β-glucanase supplemented diets. Can. J. Anim. Sci., 76: 245–252.Search in Google Scholar

Backues K.A. (2015). Anseriformes. In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 116–126.10.1016/B978-1-4557-7397-8.00016-5Search in Google Scholar

Barash I., Nitsan Z., Nir I. (1992). Metabolic and behavioural adaptation of light-bodied chicks to meal feeding. Brit. Poultry Sci., 33: 271–278.Search in Google Scholar

Bayer R., Bird F., Musgrave S., Chawan C. (1974). A simple method of preparation of gastroinestinal tract tissues for scanning electron microscopy. J. Anim. Sci., 38: 354–356.Search in Google Scholar

Beauchemin K., Colombatto D., Morgavi D., Yang W. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci., 81: E37–E47.Search in Google Scholar

Befus A.D., Johnston N., Leslie G., Bienenstock J. (1980). Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer’s patches. J. Immunol., 125: 2626–2632.Search in Google Scholar

Bennett C., Classen H., Schwean K., Riddell C. (2002). Influence of whole barley and grit on live performance and health of turkey toms. Poultry Sci., 81: 1850–1855.Search in Google Scholar

Bienenstock J., McDermott M.R. (2005). Bronchus- and nasal-associated lymphoid tissues. Immunol. Rev., 206: 22–31.Search in Google Scholar

Boa-Amponsem K., Dunnington E., Siegel P. (1991). Genotype, feeding regimen, and diet interactions in meat chickens. 2. Feeding behavior. Poultry Sci., 70: 689–696.Search in Google Scholar

Bolton W. (1965). Digestion in the crop of the fowl. Brit. Poultry Sci., 6: 97–102.Search in Google Scholar

Bolton W., Dewar W. (1965). The digestibility of acetic, propionic and butyric acids by the fowl. Brit. Poultry Sci., 6: 103–105.Search in Google Scholar

Buyse J., Adelsohn D., Decuypere E., Scanes C. (1993). Diurnal-nocturnal changes in food intake, gut storage of ingesta, food transit time and metabolism in growing broiler chickens: A model for temporal control of energy balance. Brit. Poultry Sci., 34: 699–709.Search in Google Scholar

Campbell B., Lack E. (2011). A dictionary of birds. Poyser Monographs, UK, pp. 120.Search in Google Scholar

Casas I.A., Dobrogosz W.J. (2000). Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health D., 12: 247–285.Search in Google Scholar

Champ M., Szylit O., Raibaud P., Aïut-Abdelkader N. (1983). Amylase production by three Lactobacillus strains isolated from chicken crop. J. Appl. Bacteriol., 55: 487–493.Search in Google Scholar

Charles J. (1995). Organochlorine toxicity in tawny frogmouths. Proc. Australian Committee of the Association of Avian Veterinarians, Dubbo, Australia, pp. 135–141.Search in Google Scholar

Chikilian M., de Speroni N.B. (1996). Comparative study of the digestive system of three species of Tinamou. I. Crypturellus tataupa, Nothoprocta cinerascens, and Nothura maculosa (Aves: Tinamidae). J. Morphol., 228: 77–88.Search in Google Scholar

Clark H.L. (1918). Notes on the anatomy of the Cuban Trogon. Auk, 35: 286–289.Search in Google Scholar

Clemens E., Stevens C., Southworth M. (1975). Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J. Nutr., 105: 1341–1350.Search in Google Scholar

Coughlan M.P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng., 3: 39–110.Search in Google Scholar

Davies W. (1939). The composition of the crop milk of pigeons. Biochem. J., 33: 898.Search in Google Scholar

Dedič S. (1930). Über physiologische Formierung und Motiliät der Verdauungsorgane bei Habichten (Aster palumbarius). Fortschr. Geb. Roentgenstr., 43: 367–371.Search in Google Scholar

Deeming D.C. (1999). The ostrich: biology, production and health. Wallingford, UK, CABI Publishing University Press, pp. 39–42.Search in Google Scholar

DelHoyo J., Elliott A., Sargatal J. (2002). Handbook of the birds of the world, vol. 7. Lync Edicions, Barcelona, Spain.Search in Google Scholar

DelRio C.M., Schondube J.E., McWhorter T.J., Herrera L.G. (2001). Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am. Zool., 41: 902–915.Search in Google Scholar

Denbow D. (2000). Gastrointestinal anatomy and physiology. In: Sturkie’s Avian Physiology, 5th ed., Whittow G.C. (ed.). San Diego, Academic Press, pp. 299–325.10.1016/B978-012747605-6/50013-4Search in Google Scholar

Denbow D.M. (1994). Peripheral regulation of food intake in poultry. J. Nutr., 124, Suppl. 8: 1349S–1354S.Search in Google Scholar

Denstadli V., Vestre R., Svihus B., Skrede A., Storebakken T. (2006). Phytate degradation in a mixture of ground wheat and ground defatted soybeans during feed processing: Effects of temperature, moisture level, and retention time in small- and medium-scale incubation systems. J. Agr. Food Chem., 54: 5887–5893.Search in Google Scholar

Desmeth M., Vandeputte-Poma J. (1980). Lipid composition of pigeon cropmilk – I. Total lipids and lipid classes. Com. Biochem. Phys. B., 66: 129–133.Search in Google Scholar

Donalson L., McReynolds J., Kim W., Chalova V., Woodward C., Kubena L., Nisbet D., Ricke S. (2008). The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and intestinal shedding in laying hens. Poultry Sci., 87: 1253–1262.Search in Google Scholar

Doneley B. (2010). The digestive tract. In: Avian medicine and surgery in practice: Companion and aviary birds. Manson Publishing Ltd., London, UK, pp. 16–19.Search in Google Scholar

Dorrestein G.M. (2009). Passerines and exotic softbills. In: Handbook of avian medicine, Tully T.N., Dorrestein G.M., Jones A.K. (eds), Elsevier/Saunders, pp.145–179.Search in Google Scholar

Dubos R., Schaedler R.W., Costello R., Hoet P. (1965). Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J. Exp. Med., 122: 67–76.Search in Google Scholar

Duke G. (1986). Alimentary canal: secretion and digestion, special digestive functions, and absorption. In: Avian Physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, pp. 289–302.10.1007/978-1-4612-4862-0_12Search in Google Scholar

Duke G.E. (1989). Avian gastrointestinal motor function. In: Handbook of physiology – the gastrointestinal system, Wood J.T. (ed.). Oxford University Press, New York, USA, pp. 1283–1300.10.1002/cphy.cp060135Search in Google Scholar

Duke G.E. (1997). Gastrointestinal physiology and nutrition in wild birds. Proc. Nutr. Soc., 56: 1049–1056.Search in Google Scholar

Eber G. (1956). Vergleichende Untersuchungen über die Ernährung einiger Finkenvögel. Biol. Abh., 13: 1–60.Search in Google Scholar

El-Ziney M., Van Den Tempel T., Debevere J., Jakobsen M. (1999). Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J. Food Protect., 62: 257–261.Search in Google Scholar

Farner D.S. (1942). The hydrogen ion concentration in avian digestive tracts. Poultry Sci., 21: 445–450.Search in Google Scholar

Farner D.S. (1960). Digestion and the digestive system. In: Biology and comparative physiology of birds, Vol. 1, Marschall H.J. (ed.). Academic Press, New York, USA, pp. 411–467.10.1016/B978-1-4832-3142-6.50016-1Search in Google Scholar

Fisher H., Weiss H.S. (1956). Feed consumption in relation to dietary bulk and energy level: The effect of surgical removal of the crop. Poultry Sci., 35: 418–423.Search in Google Scholar

Fonseca B.B., Beletti M.E., Silva M.S.d., Silva P.L.D., Duarte I.N., Rossi D.A. (2010). Microbiota of the cecum, ileum morphometry, pH of the crop and performance of broiler chickens supplemented with probiotics. Rev. Bras. Zootec., 39: 1756–1760.Search in Google Scholar

Frelinger J.A. (1971). Maternally derived transferrin in pigeon squabs. Science, 171: 1260–1261.Search in Google Scholar

Freter R. (1969). Studies of mechanism of action of intestinal antibody in experimental cholera. Tex. Rep. Biol. Med., 299.Search in Google Scholar

Fujisawa T., Benno Y., Yaeshima T., Mitsuoka T. (1992). Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al., 1980) with the type strain of Lactobacillus amylovorus (Nakamura, 1981). Int. J. Syst. Bacteriol., 42: 487–491.Search in Google Scholar

Fuller R. (1977). The importance of lactobacilli in maintaining normal microbial balance in the crop. Brit. Poultry Sci., 18: 85–94.Search in Google Scholar

Fuller R. (2001). The chicken gut microflora and probiotic supplements. J. Poultry Sci., 38: 189–196.Search in Google Scholar

Fuller R., Brooker B. (1974). Lactobacilli which attach to the crop epithelium of the fowl. Am. J. Cli. Nutr., 27: 1305–1312.Search in Google Scholar

Gallego M., Olah I., DelCacho E., Glick B. (1993). Anti-S-100 antibody recognizes ellipsoid-associated cells and other dendritic cells in the chicken spleen. Dev. Comp. Immunol., 17: 77–83.Search in Google Scholar

Gelis S. (2006). Evaluating and treating the gastrointestinal system. In: Clinical avian medicine, vol. 1, Harrison G.J., Lightfoot T.L. (eds). Palm Beach, Spix Publishing Inc., pp. 411–440.Search in Google Scholar

Giannenas I., Papaneophytou C., Tsalie E., Pappas I., Triantafillou E., Tontis D., Kontopidis G. (2014). Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, pH in the digestive tract, intestinal microbiota and morphology. Asian Australas. J. Anim. Sci., 27: 225–236.Search in Google Scholar

Gillespie M.J., Stanley D., Chen H., Donald J.A., Nicholas K.R., Moore R.J., Crowley T.M. (2012). Functional similarities between pigeon ‘milk’ and mammalian milk: induction of immune gene expression and modification of the microbiota. PLoS ONE, 7: e48363.Search in Google Scholar

Glick B. (2000). Immunophysiology. In: Sturkie’s Avian Physiology, Whittow G.C. (ed.). Academic Press, San Diego, pp. 657–670.10.1016/B978-012747605-6/50027-4Search in Google Scholar

Glick B., Olah I. (1981). Gut-associated-lymphoid tissue of the chicken. Scan. Electron Micros., 3: 99–108.Search in Google Scholar

Godoy-Vitorino F., Ley R.E., Gao Z., Pei Z., Ortiz-Zuazaga H., Pericchi L.R., Garcia-Amado M.A., Michelangeli F., Blaser M.J., Gordon J.I. (2008). Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Appl. Environ. Microb., 74: 5905–5912.Search in Google Scholar

Godoy-Vitorino F., Goldfarb K.C., Brodie E.L., Garcia-Amado M.A., Michelangeli F., Domínguez-Bello M.G. (2010). Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J., 4: 611–620.Search in Google Scholar

Godoy-Vitorino F., Goldfarb K.C., Karaoz U., Leal S., Garcia-Amado M.A., Hugenholtz P., Tringe S.G., Brodie E.L., Dominguez-Bello M.G. (2012). Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J., 6: 531–541.Search in Google Scholar

Gordon R., Roland D. (1997). The influence of environmental temperature on in vivo limestone solubilization, feed passage rate, and gastrointestinal pH in laying hens. Poultry Sci., 76: 683–688.Search in Google Scholar

Goudswaard J., van der Donk J., van der Gaag I., Noordzij A. (1979). Peculiar IgA transfer in the pigeon from mother to squab. Dev. Comp. Immunol., 3: 307–319.Search in Google Scholar

Grajal A. (1995). Structure and function of the digestive tract of the hoatzin (Opisthocomus hoazin): a folivorous bird with foregut fermentation. Auk, 112: 20–28.Search in Google Scholar

Grajal A., Strahl S.D., Parra R., Dominguez M.G., Neher A. (1989). Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science, 245: 1236–1238.Search in Google Scholar

Greiner R., Konietzny U. (2011). Phytases: Biochemistry, enzymology and characteristics relevant to animal feed use. In: Enzymes in farm animal nutrition, Bedford M.R., Partridge G.G. (eds). CAB Intl. Publishing, Oxfordshire, UK, pp. 96–128.Search in Google Scholar

Groebbels F. (1932). Der Vogel: Atmungswelt und Nahrungswelt. Berlin: Verlag von Gebruder, Borntraeger.Search in Google Scholar

Guareschi C. (1936). Necessita di fattori alimentari materni per l’accrescimento del giovanissimi colombi. Boll. Soc. Ital. Biol. Sper., 11: 411–412.Search in Google Scholar

Hammons S., Oh P.L., Martínez I., Clark K., Schlegel V.L., Sitorius E., Scheideler S.E., Walter J. (2010). A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Syst. Appl. Microbiol., 33: 275–281.Search in Google Scholar

Hargis B., Caldwell D., Brewer R., Corrier D., De Loach J. (1995). Evaluation of the chicken crop as a source of Salmonella contamination for broiler carcasses. Poultry Sci., 74: 1548–1552.Search in Google Scholar

Hegde S. (1973). Composition of pigeon milk and its effect on growth in chicks. Indian J. Exp. Biol., 11: 238–239.Search in Google Scholar

Hendriks W., O’Conner S., Thomas D., Rutherfurd S., Taylor G., Guilford W. (2000). Nutrient composition of the crop contents of growing and adult grey-faced petrels (Pterodroma macroptera): A preliminary investigation. J. Roy. Soc. New Zeal., 30: 105–111.Search in Google Scholar

Henry K., MacDonald A., Magee H. (1933). Observations on the functions of the alimentary canal in fowls. J. Exp. Biol., 10: 153–171.Search in Google Scholar

Herpol C., van Grembergen G. (1967). La signification du pH dans le tube digestif de Gallus domesticus. Ann. Biol. Anim. Bioch., 7: 33–38.Search in Google Scholar

Hilmi H.T.A., Surakka A., Apajalahti J., Saris P.E. (2007). Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Appl. Environ. Microb., 73: 7867–7873.Search in Google Scholar

Hinton A., Buhr R., Ingram K. (2000 a). Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Sci., 79: 212–218.10.1093/ps/79.2.21210735749Search in Google Scholar

Hinton A., Buhr R., Ingram K., (2000 b). Reduction of Salmonella in the crop of broiler chickens subjected to feed withdrawal. Poultry Sci., 79: 1566–1570.10.1093/ps/79.11.156611092326Search in Google Scholar

Hinton Jr. A., Corrier D.E., Spates G.E., Norman J.O., Ziprin R.L., Beier R.C., DeLoach J.R. (1990). Biological control of Salmonella typhimurium in young chickens. Avian Dis., 34: 626–633.Search in Google Scholar

Hodgkiss J.P. (1981). Distension-sensitive receptors in the crop of the domestic fowl (Gallus domesticus). Comp. Biochem. Phys. A., 70: 73–78.Search in Google Scholar

Holt P.S., Vaughn L.E., Gast R.K., Stone H.D. (2002). Development of a lavage procedure to collect crop secretions from live chickens for studying crop immunity. Avian Pathol., 31: 589–592.Search in Google Scholar

Holt P.S., Vaughn L.E., Moore R.W., Gast R.K. (2006). Comparison of Salmonella enterica serovar Enteritidis levels in crops of fed or fasted infected hens. Avian Dis., 50: 425–429.Search in Google Scholar

Hong Y.H., Song W., Lee S., Lillehoj H. (2012). Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Sci., 91: 1081–1088.Search in Google Scholar

Horrocks M., Salter J., Braggins J., Nichol S., Moorhouse R., Elliott G. (2008). Plant microfossil analysis of coprolites of the critically endangered kakapo (Strigops habroptilus) parrot from New Zealand. Rev. Palaeobot. Palyno., 149: 229–245.Search in Google Scholar

Houston D., Copsey J. (1994). Bone digestion and intestinal morphology of the Bearded Vulture. J. Raptor Res., 28: 73–78.Search in Google Scholar

Hunter J. (1840). Observations on certain parts of the animal oeconomy: Inclusive of several papers from the philosophical transactions. Etc. New Orleans: Haswell, Barrington, and Haswell.Search in Google Scholar

Iankov I.D., Petrov D.P., Mladenov I.V., Haralambieva I.H., Mitov I.G. (2002). Lipopolysaccharide-specific but not anti-flagellar immunoglobulin A monoclonal antibodies prevent Salmonella enterica serotype Enteritidis invasion and replication within HEp-2 cell monolayers. Infect. Immun., 70: 1615–1618.Search in Google Scholar

Irving L., West G.C., Peyton L.J. (1967). Winter feeding program of Alaska willow ptarmigan shown by crop contents. Condor, 69: 69–77.Search in Google Scholar

Jack R.W., Tagg J.R., Ray B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59: 171–200.Search in Google Scholar

Jackson S., Duke G.E. (1995). Intestine fullness influences feeding behaviour and crop filling in the domestic turkey. Physiol. Behav., 58: 1027–1034.Search in Google Scholar

Janczyk P., Halle B., Souffrant W. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poultry Sci., 88: 2324–2332.Search in Google Scholar

Jensen M.A., Webster J.A., Straus N. (1993). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. App. Environ. Microb., 59: 945–952.Search in Google Scholar

Johnston G.B. (1999). Comparative anatomy of Musophagidae (Turacos). AFA Watchbird, 26: 43–45.Search in Google Scholar

Józefiak D., Sip A. (2013). Bacteriocins in poultry nutrition – a review. Ann. Anim. Sci., 13: 449–462.Search in Google Scholar

Józefiak D., Rutkowski A., Martin S. (2004). Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Tech., 113: 1–15.Search in Google Scholar

Józefiak D., Kaczmarek S., Rutkowski A., Józefiak A., Jensen B., Engberg R. (2005). Fermentation in broiler chicken gastrointestinal tract as affected by high dietary inclusion of barley and beta-glucanase supplementation. J. Anim. Feed Sci., 14: 695.Search in Google Scholar

Józefiak D., Rutkowski A., Jensen B.B., Engberg R.M. (2007). Effects of dietary inclusion of triticale, rye and wheat and xylanase supplementation on growth performance of broiler chickens and fermentation in the gastrointestinal tract. Anim. Feed Sci. Tech., 132: 79–93.Search in Google Scholar

Józefiak D., Kaczmarek S., Rutkowski A. (2008). A note on the effects of selected prebiotics on the performance and ileal microbiota of broiler chickens. J. Anim. Feed Sci., 17: 392–397.Search in Google Scholar

Józefiak D., Kaczmarek S., Rutkowski A. (2010). The effects of benzoic acid supplementation on the performance of broiler chickens. J. Anim. Physiol. An. N., 94: 29–34.Search in Google Scholar

Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jensen B.B., Engberg R.M. (2011). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Brit. Poultry Sci., 52: 492–499.Search in Google Scholar

Józefiak D., Sip A., Rutkowski A., Rawski M., Kaczmarek S., Wołuń-Cholewa M., Engberg R.M., Højberg O. (2012). Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Sci., 91: 1899–1907.Search in Google Scholar

Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PloSone, 8: e85347.Search in Google Scholar

Józefiak D., Kierończyk B., Rawski M., Hejdysz M., Rutkowski A., Engberg R.M., Højberg O. (2014). Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract. Animal., 8: 1–11.Search in Google Scholar

Karasow W.H., Phan D., Diamond J.M., Carpenter F.L. (1986). Food passage and intestinal nutrient absorption in hummingbirds. Auk, 103: 453–464.Search in Google Scholar

Kimura N., Mimura F., Nishida S., Kobayashi A., Mitsuoka T. (1976). Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poultry Sci., 55: 1375–1383.Search in Google Scholar

King A.S., McLelland J. (1984). Birds. Their Structure and Function. London, Baillière-Tindall, pp. 84–109.Search in Google Scholar

Kirk Baer C. (1999). Comparative nutrition and feeding considerations of young Columbidae. In: Zoo and wild animal medicine – Current therapy 4, Fowler M.E., Miller R.E. (eds). W.S. Saunders, Philadelphia, USA, pp. 269–277.Search in Google Scholar

Klasing K.C. (1999). Avian gastrointestinal anatomy and physiology. Semin. Avian Exotic Pet Med., 8: 42–50.Search in Google Scholar

Knarreborg A., Simon M.A., Engberg R.M., Jensen B.B., Tannock G.W. (2002). Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microb., 68: 5918–5924.Search in Google Scholar

Kobryń H., Kobryńczuk F. (2004). Apparatus digestorius. In: Animal anatomy, vol. 3. (in Polish). Scientific Publishing Company PWN, Warsaw, pp. 367–380.Search in Google Scholar

Kotarski S.F., Waniska R.D., Thurn K.K. (1992). Starch hydrolysis by the ruminal microflora. J. Nutr., 122: 178–190.Search in Google Scholar

Kubena L., Byrd J., Moore R., Ricke S., Nisbet D. (2005). Effects of drinking water treatment on susceptibility of laying hens to Salmonella enteritidis during forced molt. Poultry Sci., 84: 204–211.Search in Google Scholar

Lan G.Q., Abdullah N., Jalaludin S., Ho Y.W. (2010). In vitro and in vivo enzymatic dephosphorylation of phytate in maize–soya bean meal diets for broiler chickens by phytase of Mitsuokella jalaludinii. Anim. Feed Sci. Tech., 158: 155–164.Search in Google Scholar

Lang E.M. (1963). Flamingoes raise their young on a liquid containing blood. Experientia, 19: 532–533.Search in Google Scholar

Langenfeld M.S. (1992). Systema digestorium, s. apparatus digestorius. In: Chicken anatomy (in Polish). Scientific Publishing Company PWN, pp. 91–117.Search in Google Scholar

Lauer E., Helming C., Kandler O. (1980). Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation. Zbl. Bakt. Mik. Hyg. I. C., 1: 150–168.Search in Google Scholar

Lauková A., Mareková M., Javorský P. (1993). Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett. Appl. Microbiol., 16: 257–260.Search in Google Scholar

Leasure E., Foltz V. (1940). Experiments on absorption in the crop of chickens. J. Am. Vet. Med. Assoc., 96: 236.Search in Google Scholar

Leger J.S., Vince M., Jennings J., McKerney E., Nilson E. (2012). Toucan hand feeding and nestling growth. Vet. Clin. N. Am-Exotic., 15: 183–193.Search in Google Scholar

Liebert F., Wecke C., Schoner F. (1993). Phytase activities in different gut contents of chickens as dependent on levels of phosphorus and phytase supplementations. Proc. 1st European Symposium Enzymes in Animal Nutrition, pp. 202–205.Search in Google Scholar

López-Calleja M.V., Bozinovic F. (2000). Energetics and nutritional ecology of small herbivorous birds. Rev. Chil. Hist. Nat., 73: 411–420.Search in Google Scholar

Lumeij J.T. (1994). Gastroenterology. In: Avian medicine principles and application, Ritchie B.W., Harrison G.J., Harrison L.R. (eds). Wingers, Lake Worth, FL, pp. 482–521.Search in Google Scholar

Mabelebele M., Alabi O., Ngambi J., Norris D., Ginindza M. (2014). Comparison of gastrointestinal tracts and pH values of digestive organs of Ross 308 broiler and indigenous venda chickens fed the same diet. Asian J. Anim. Vet. Adv., 9: 71–76.Search in Google Scholar

Mackie R., White B., Isaacson R. (1997). Gastrointestinal microbes and host interactions. In: Gastrointestinal microbiology, vol. 2. Chapman & Hall, New York, USA.Search in Google Scholar

Madsen V., Valkiūnas G., Iezhova T.A., Mercade C., Sanchez M., Osorno J.L. (2007). Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): variation with age-class, visited status and blood parasite infection. Horm. Behav., 51: 156–163.Search in Google Scholar

Matsumoto R., Hashimoto Y. (2000). Distribution and developmental change of lymphoid tissues in the chicken proventriculus. J. Vet. Med. Sci., 62: 161–167.Search in Google Scholar

May J., Deaton J. (1989). Digestive tract clearance of broilers cooped or deprived of water. Poultry Sci., 68: 627–630.Search in Google Scholar

Mayr G. (2010). Phylogenetic relationships of the paraphyletic ‘caprimulgiform’ birds (nightjars and allies). J. Zool. Syst. Evol. Res., 48: 126–137.Search in Google Scholar

McCain S. (2015). Charadriiformes. In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 112–115.10.1016/B978-1-4557-7397-8.00015-3Search in Google Scholar

McLelland J. (1979). Digestive system. In: Form and function in birds, vol. 1, King A.S., McLelland J. (eds). Academic Press, London, pp. 69–181.Search in Google Scholar

McLelland J. (1990). Digestive system. In: A colour atlas of avian anatomy. Wolfe Medical Publications Ltd., London, pp. 47–65.Search in Google Scholar

McLelland J. (1993). Apparatus digestorius [systema alimentarium]. In: Handbook of avian anatomy: nomina anatomica avium, Baumel J., King A.S., Breazile J.E., Evans H.E., Berge J.C.V. (eds.). Cambrigde, MA: Publications of the Nuttall Ornithological Club, USA, no. 23, pp. 301–328.Search in Google Scholar

Mekonnen H., Mulatu D., Kelay B., Berhan T. (2010). Assessment of the nutritional status of indigenous scavenging chickens in Ada’a district, Ethiopia. Trop. Anim. Health Pro., 42: 123–130.Search in Google Scholar

Michetti P., Mahan M., Slauch J., Mekalanos J., Neutra M. (1992). Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun., 60: 1786–1792.Search in Google Scholar

Michetti P., Porta N., Mahan M.J., Slauch J.M., Mekalanos J.J., Blum A., Kraehenbuhl J.-P., Neutra M.R. (1994). Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology, 107: 915–923.Search in Google Scholar

Miskelly C.M., Taylor G.A., Gummer H., Williams R. (2009). Translocations of eight species of burrow-nesting seabirds (genera Pterodroma, Pelecanoides, Pachyptila and Puffinus: Family Procellariidae). Biol. Conserv., 142: 1965–1980.Search in Google Scholar

Mongin P. (1976). Composition of crop and gizzard contents in the laying hen. Brit. Poultry Sci., 17: 499–507.Search in Google Scholar

Montaner A.D., Beltzer A., Carlo E.D., Mosso E. (1997). Anatomía macroscópica e histológica de esófago, estómago, intestino y recto de la garcita azulada, Buturoides striatus (Aves: Ardeidae). Rev. Ceres., 44: 83–93.Search in Google Scholar

Montville T., Winkowski K., Ludescher R. (1995). Models and mechanisms for bacteriocin action and application. Int. Dairy J., 5: 797–814.Search in Google Scholar

Moore R., Park S., Kubena L., Byrd J., McReynolds J., Burnham M., Hume M., Birkhold S., Nisbet D., Ricke S. (2004). Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to Salmonella enteritidis during forced molt. Poultry Sci., 83: 1276–1286.Search in Google Scholar

Mwalusanya N., Katule A., Mutayoba S., Minga U., Mtambo M., Olsen J. (2002). Nutrient status of crop contents of rural scavenging local chickens in Tanzania. Brit. Poultry Sci., 43: 64–69.Search in Google Scholar

Nielsen B.L. (2004). Behavioural aspects of feeding constraints: do broilers follow their gut feelings? App. Anim. Behav. Sci., 86: 251–260.Search in Google Scholar

Niethammer G. (1933). Anatomisch-histologische und physiologische Untersuchungen über die Kropfbildung der Vögel. Z. Wiss. Zool. Abt., 144: 12–101.Search in Google Scholar

Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.Search in Google Scholar

Olah I., Glick B. (1979). Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. Poultry Sci., 58: 195–210.Search in Google Scholar

Olah I., Glick B., Taylor R. (1984). Meckel’s diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec., 208: 253–263.Search in Google Scholar

Olah I., Kupper A., Kittner Z. (1996). The lymphoid substance of the chicken’s Harderian gland is organized in two histologically distinct compartments. Microsc. Res. Techniq., 34: 166–176.Search in Google Scholar

Onyango E., Bedford M., Adeola O. (2005). Phytase activity along the digestive tract of the broiler chick: A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Can. J. Anim. Sci., 85: 61–68.Search in Google Scholar

Pace D., Landolt P., Mussehl F. (1952). The effect of pigeon crop-milk on growth in chickens. Growth, 16: 279–285.Search in Google Scholar

Pacheco M.A., García-Amado M.A., Bosque C., Domínguez-Bello M.G. (2004). Bacteria in the crop of the seed-eating green-rumped parrotlet. Condor, 106: 139–143.Search in Google Scholar

Padilla L.R. (2015). Gaviiformes, Podicipediformes, and Procellariformes (Loons, Grebes, Petrels, and Albatrosses) In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 89–96.Search in Google Scholar

Ponte P., Lordelo M., Guerreiro C., Soares M., Mourao J., Crespo J., Crespo D., Prates J., Ferreira L., Fontes C. (2008). Crop β-glucanase activity limits the effectiveness of a recombinant cellulase used to supplement a barley-based feed for free-range broilers. Brit. Poultry Sci., 49: 347–359.Search in Google Scholar

Prévost J., Vilter V., Françaises E.P. (1963). Histologie de la secretion oesophagienne du manchot empereur. Proc. XIIIth International Ornithological Congress, pp. 1085–1094.Search in Google Scholar

Pritchard P.J. (1972). Digestion of sugars in the crop. Comp. Biochem. Physiol. A., 43: 195–205.Search in Google Scholar

Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Józefiak D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PloS one, 10: e0119770.Search in Google Scholar

Pye G. (2003). Apodiformes and coliiformes (Swifts, Swiftlets, Mousebirds). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 239–245.Search in Google Scholar

Quesenberry K.E., Hillyer E.V. (1994). Supportive care and emergency therapy. In: Avian medicine: principles and application. Ritchie B.W., Harrison G.J., Harrison L.R. (eds). Lake Worth, FL: Wingers, pp. 382, 416.Search in Google Scholar

Ramirez G., Sarlin L., Caldwell D., Yezak C., Hume M., Corrier D., Hargis B. (1997). Effect of feed withdrawal on the incidence of Salmonella in the crops and ceca of market age broiler chickens. Poultry Sci., 76: 654–656.Search in Google Scholar

Redrobe S. (2015). Pelecaniformes (Pelicans, Tropicbirds, Cormorants, Frigatebirds, Anhingas, Gannets). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 96–99.10.1016/B978-1-4557-7397-8.00012-8Search in Google Scholar

Richards M., Proszkowiec-Weglarz M. (2007). Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poultry Sci., 86: 1478–1490.Search in Google Scholar

Richardson A. (1970). The role of the crop in the feeding behaviour of the domestic chicken. Anim. Behav., 18: 633–639.Search in Google Scholar

Riddle O., Bates R.W., Dykshorn S.W. (1933). The preparation, identification and assay of prolactin – a hormone of the anterior pituitary. Am. J. Physiol., 105: 191–216.Search in Google Scholar

Rubio-García M., Rubio-Lozano M., Ponce-Alquicira E., Rosario-Cortes C., Nava G., Castañeda-Serrano M. (2015). Improving appearance and microbiologic quality of broiler carcasses with an allostatic modulator. Poultry Sci., 94: 1957–1963.Search in Google Scholar

Sacranie A., Svihus B., Denstadli V., Moen B., Iji P., Choct M. (2012). The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Sci., 91: 693–700.Search in Google Scholar

Salminen S., Deighton M., Gorbach S., Wright A.V. (1993). Lactic acid bacteria in health and disease. In: Lactic acid bacteria, Salminen S., Wright A.V. (eds). Mercel Dekker, Inc. New York, pp. 199–225.Search in Google Scholar

Savory C.J. (1985). An investigation into the role of the crop in control of feeding in Japanese quail and domestic fowls. Physiol. Behav., 35: 917–928.Search in Google Scholar

Schultz D.J. (2003). Columbiformes (pigeons, doves). In: Zoo and wild animal medicine, 5th ed., Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 180–187.Search in Google Scholar

Seo K., Holt P., Vaughn L., Gast R., Stone H. (2003). Detection of Salmonella enteritidis-specific immunoglobulin A antibodies in crop samples from chickens infected with Salmonella enteritidis. Poultry Sci., 82: 67–70.Search in Google Scholar

Shetty S., Hegde S. (1993). Pigeon milk: a new source of growth factor. Experientia, 49: 925–928.Search in Google Scholar

Shetty S., Hegde S., Bharathi L. (1992). Purification of a growth factor from pigeon milk. Biochim. Biophys. Acta BBA-Gen. Subjects, 1117: 193–198.Search in Google Scholar

Sibbald I., Hutcheson L.M. (1959). The inability of the crop to convert β-carotene to vitamin A within four hours. Poultry Sci., 38: 698–700.Search in Google Scholar

Sibley C.G., Ahlquist J.E. (1990). Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven, Connecticut.Search in Google Scholar

Slater P. (1974). The temporal pattern of feeding in the zebra finch. Anim. Behav., 22: 506–515.Search in Google Scholar

Smith J.A. (2015). Passeriformes (Songbirds, Perching Birds). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 236–246.10.1016/B978-1-4557-7397-8.00031-1Search in Google Scholar

Soedarmo D., Kare M.R., Wasserman R. (1961). Observations on the removal of sugar from the mouth and the crop of the chicken. Poultry Sci., 40: 123–128.Search in Google Scholar

Stelwagen K., Carpenter E., Haigh B., Hodgkinson A., Wheeler T. (2009). Immune components of bovine colostrum and milk. J. Anim. Sci., 87: 3–9.Search in Google Scholar

Stern N., Svetoch E., Eruslanov B., Perelygin V., Mitsevich E., Mitsevich I., Pokhilenko V., Levchuk V., Svetoch O., Seal B. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Ch., 50: 3111–3116.Search in Google Scholar

Stevens C.E., Hume I.D. (1998). Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev., 78: 393–427.Search in Google Scholar

Stevens C.E., Hume I.D. (2004). Comparative physiology of the vertebrate digestive system. Cambridge University Press, New York.Search in Google Scholar

Strompfova V., Laukova A. (2007). In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe, 13: 228–237.Search in Google Scholar

Studer-Thiersch A. (1967). Beiträge zur Brutbiologie der Flamingos (Gattung phoenicopterus). Zool. Gart., 34: 154–229.Search in Google Scholar

Sturkie P. (1976 a). Alimentary canal: anatomy, prehension, deglutition, feeding, drinking, passage of ingesta, and motility. In: Avian physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, NY, pp. 185–195.10.1007/978-3-642-96274-5_9Search in Google Scholar

Sturkie P. (1976 b). Secretion of gastric and pancreatic juice, pH of tract, digestion in alimentary canal, liver and bile, and absorption. In: Avian physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, NY, pp. 196–209.10.1007/978-3-642-96274-5_10Search in Google Scholar

Svihus B. (2014). Function of the digestive system. J. Appl. Poultry Res., 23: 306–314.Search in Google Scholar

Svihus B., Hetland H., Choct M., Sundby F. (2002). Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Brit. Poultry Sci., 43: 662–668.Search in Google Scholar

Svihus B., Sacranie A., Denstadli V., Choct M. (2010). Nutrient utilization and functionality of the anterior digestive tract caused by intermittent feeding and inclusion of whole wheat in diets for broiler chickens. Poultry Sci., 89: 2617–2625.Search in Google Scholar

Svihus B., Lund V., Borjgen B., Bedford M., Bakken M. (2013). Effect of intermittent feeding, structural components and phytase on performance and behaviour of broiler chickens. Brit. Poultry Sci., 54: 222–230.Search in Google Scholar

Szarski H., Grodziński Z. (1987). Digestive system. In: Comparative anatomy of vertebrates (in Polish). Scientific Publishing Company PWN, Warsaw, pp. 538–539.Search in Google Scholar

Taylor M. (2000). Anatomy and physiology of the gastrointestinal tract for the avian practitioner. In: Birds, Post Grad Found in Vet. Sci. Univ. of Sydney, Aus. Proc., 334, pp. 107–113.Search in Google Scholar

Taylor M., Murray M.J. (1999). Endoscopic examination and therapy of the avian gastrointestinal tract. Semin. Avian Exot. Pet Med., 8: 110–114.Search in Google Scholar

Teekell R., Knox E., Watts A. (1967). Absorption and protein biosynthesis of threonine in the chick. Poultry Sci., 46: 1185–1189.Search in Google Scholar

Thompson J.L., Hinton M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. Brit. Poultry Sci., 38: 59–65.Search in Google Scholar

Tully T.N. (2009). Ratites. In: Handbook of avian medicine, Tully T.N., Dorrestein G.M., Jones A.K. (eds). Elsevier/Saunders, pp. 228–233.10.1016/B978-0-7020-2874-8.00011-0Search in Google Scholar

Van Dijk A., Veldhuizen E.J., Kalkhove S.I., Tjeerdsma-van Bokhoven J.L., Romijn R.A., Haagsman H.P. (2007). The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Ch., 51: 912–922.Search in Google Scholar

Van Immerseel F., Rood J.I., Moore R.J., Titball R.W. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol., 17: 32–36.Search in Google Scholar

Wagstrom E.A., Yoon K.-J., Zimmerman J.J. (2000). Immune components in porcine mammary secretions. Viral Immunol., 13: 383–397.Search in Google Scholar

Waite D.W., Deines P., Taylor M.W. (2012). Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus). PloS one, 7: e35803-e35803.Search in Google Scholar

Waite D.W., Taylor M.W. (2015). Exploring the avian gut microbiota: current trends and future directions. Front. Microbiol., 6: 673.Search in Google Scholar

Wally J., Buchanan S.K. (2007). A structural comparison of human serum transferrin and human lactoferrin. Biometals, 20: 249–262.Search in Google Scholar

Wehner G., Harrold R. (1982). Crop volume of chickens as affected by body size, sex, and breed. Poultry Sci., 61: 598–600.Search in Google Scholar

Wheelwright N.T. (1983). Fruits and the ecology of Resplendent Quetzals. Auk, 100: 286–301.Search in Google Scholar

Woodward C., Kwon Y., Kubena L., Byrd J., Moore R., Nisbet D., Ricke S. (2005). Reduction of Salmonella enterica serovar Enteritidis colonization and invasion by an alfalfa diet during molt in Leghorn hens. Poultry Sci., 84: 185–193.Search in Google Scholar

Yeoman C.J., Chia N., Jeraldo P., Sipos M., Goldenfeld N.D., White B.A. (2012). The microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev., 13: 89–99.Search in Google Scholar

Yildirim Z., Johnson M.G. (1998). Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J. Food Protect., 61: 47–51.Search in Google Scholar

Zheng X., Martin L.D., Zhou Z., Burnham D.A., Zhang F., Miao D. (2011). Fossil evidence of avian crops from the Early Cretaceous of China. P. Natl. Acad. Sci., 108: 15904–15907.Search in Google Scholar

Ziswiler V., Farner D.S. (1972). Digestion and the digestive system. In: Avian biology, vol. II, Farner D., King J., Parkes K. (eds). Academic Press, New York, London, pp. 343–430.10.1016/B978-0-12-249402-4.50015-2Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine