Open Access

Initiation and Tolerance of Macro-Damage of First Ply (FBF) in a Process of Damaging of Hybrid Multi-Ply Structures Due to Reinforcement Archtecture

   | Jul 28, 2018

Cite

1. Giurgiutiu V.: Fundamentals of Aerospace Composite Materials. [In] Structural Health Monitoring of Aerospace Composites. Elsevier 2015.10.1016/B978-0-85709-523-7.00016-5Search in Google Scholar

2. Kuna-Ciskał H., Skrzypek J., CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Engineering Fracture Mechanics, 71(4-6) (2004).10.1016/S0013-7944(03)00023-7Search in Google Scholar

3. Shan M., Zhao L., Hong H., Liu F., Zhang J.: A progressive fatigue damage model for composite structures in hygrothermal environments. International Journal of Fatigue, 111 (2018).10.1016/j.ijfatigue.2018.02.019Search in Google Scholar

4. Ochelski S., Gotowicki P., Doświadczalna ocena zdolności pochłaniania energii kompozytów węglowo-epoksydowych i szklano-epoksydowch. Biuletyn WAT, 56(1) (2007) in Polish.Search in Google Scholar

5. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).10.1016/j.dental.2006.08.00317084889Search in Google Scholar

6. Kuhtz M., Horning A., Gude M., Jäger H., A method to control delaminations in composites for adjusted energy dissipation characteristics. Materials & Design, 123 (2017).10.1016/j.matdes.2017.03.003Search in Google Scholar

7. Erden S., Ho K.: Fiber reinforced composites. [In] Fiber Technology for Fiber-Reinforced Composites [Ed] Özgür Seydibeyoğlu M, Mohanty A.K., Misra M. Woodhead Publishing 2017.10.1016/B978-0-08-101871-2.00003-5Search in Google Scholar

8. Ferracene J.L., Palin W.M. Effects of particulate filler systems on the properties and performance of dental polymer composites [In] Non-Metallic Biomaterials for Tooth Repair and Replacement, [Ed] P. Vallittu, Woodhead Publishing, Cambridge 2013.10.1533/9780857096432.3.294Search in Google Scholar

9. Shalaby W. Shalaby, Ulrich S., Polymers for dental and orthopedic applications. CRC Press, Boca Raton 2007.10.1201/9781420003376Search in Google Scholar

10. Lloyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).10.1111/j.1365-2842.1984.tb00591.x6589385Search in Google Scholar

11. Fani M., Farmani S., Bagheri R., Fratcture toughness of resin composite under different modes and media: reviev of articles. Journal of Dental Biomaterials, 2(3) (2015).Search in Google Scholar

12. Hammouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restorative material. Journal of Biomaterials and Nanobiotechnology, 3(2) (2012).Search in Google Scholar

13. Soderholm K.J. Fracture of dental materials, [In] Applied fracture mechanics, [Ed] Belov A., InTech, 2012.10.5772/48354Search in Google Scholar

14. Marandu S.I., Gu G., Bicker R., Experimental and analytical study of surface fatigue life in dental composites. Journal of Composite Materials, 50(16) (2016).10.1177/0021998315602942Search in Google Scholar

15. Farooq M., Banthia N.: An innovative FRP fibre for concrete reinforcement: Production of fibre, micromechanics, and durability, 172 (2018).Search in Google Scholar

16. Ng S.C., Ismail N., Ali A., Sahari B., Yousof J.M., Experimental investigation on effective detection of delamination in GFRP composites using Taguchi method. Advances in Materials Science, 12(3) (2012).10.2478/v10077-012-0009-0Search in Google Scholar

17. Surowska B., Bieniaś J.: Wytwarzanie wielowarstwowych struktur kompozytowych metodą autoklawową. Kompozyty (Composites), 10(2), (2010), in PolishSearch in Google Scholar

18. Imielińska K., Wojtyra R.: Wpływ absorpcji wody na właściwości laminatów winyloestrowych wzmocnionych włóknem aramidowym i szklanym. Kompozyty (Composites), 3(7) (2003), in Polish.Search in Google Scholar

19. Lung C.Y., Sarfraz Z., Habib A., Khan A.S., Matinlinna J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the Mechanical Behavior of Biomedical Materials, 54 (2016).10.1016/j.jmbbm.2015.09.03326479428Search in Google Scholar

20. Braga R.R., Pfeifer C.S., Sakaguchi R.L., Testing of Dental Materials and Biomechanics. [In] Craig’s Restorative Dental Materials, 13th Edition, [Ed] Sakaguchi R.L., Powers J.M, Elsevier Mosby 2012.Search in Google Scholar

21. Gołaski L., Failure criteria for laminates under combined loading conditions, [In] Joint Seminary on Failure of Advanced Materials, [Ed] Francois D. and Golaski L., Paris – Kielce, 1996Search in Google Scholar

22. Kielce University of Technology, 1996, s. 37 ÷61. Li W., Swain M.V., Li Q., Ironsid J., Steven G.P.: Fiber reinforced composite dental bridge. Part I: experimental investigation. Biomaterials vol. 25, No. 20, 2004.Search in Google Scholar

23. ISO 4049:2009 Dentistry - Polymer - based restorative materials.Search in Google Scholar

24. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).10.1016/j.dental.2006.08.00317084889Search in Google Scholar

25. Camanho P.P., Davila C.G.: Mixed-mode decohesion finite elements for the simulation of delamination on composite materials, NASA/TM-2002-0211737, 2002.Search in Google Scholar

26. Walczak A., Pieniak D., Niewczas A., Niewczas A.M. Kordos P., Study of ceramic-polymer composites reliability based on the bending strength test. Journal of KONBiN, 35(3) (2015).10.1515/jok-2015-0050Search in Google Scholar

27. Niewczas A.M., Pieniak D., Ogrodnik P., Reliability analysis of strength of dental composites subjected to different photopolymerization procedures. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 14(3) (2012).Search in Google Scholar

28. Leinfelder KF, Bayne SC, Swift Jr EJ., Packable composites: overview and technical considerations. J. Esthet. Dent., 11 (1999) 234–49.10.1111/j.1708-8240.1999.tb00405.x10825879Search in Google Scholar

29. Topoliński T.: Analiza teoretyczna i badania kumulacji uszkodzeń zmęczeniowych konstrukcyjnych kompozytów polimerowych. Rozprawy nr 82, Bydgoszcz 1997, in Polish.Search in Google Scholar

30. Hwang W., Han K.S., Fatigue of composite fatigue modulus concept and life prediction. Journal of Composite Materials, 20(3) (1986).10.1177/002199838602000203Search in Google Scholar

31. Jones D.R.H., Ashby M.F., Engineering Materials: An Introduction to Microstructures, Processing and Design. Butterworth-Heinemann 2005.Search in Google Scholar

32. LLoyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).10.1111/j.1365-2842.1984.tb00591.x6589385Search in Google Scholar

33. Fani M., Farmani S., Bagheri R., Fracture toughness of resin composite under different modes and media: review of articles. Journal of Dental Biomaterials, 2(3) (2015).Search in Google Scholar

34. Hamouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restortive material. Journal of Biomaterials and Nanobiotechnology, 3(3) (2012).Search in Google Scholar

35. Soderholm K.J., Fracture of dental materials, [In] Applied Fracture Mechanics, [Ed] Belov A. InTech, 2012.10.5772/48354Search in Google Scholar

36. Bełzowski A., Stasieńko J., Ziółkowski B., Kamińska A., Niektóre kryteria akceptacji defektów w kompozytach na przykładzie laminatu ciętego strumieniem wody. Kompozyty (Composites), 4(12) (2004), in Polish.Search in Google Scholar

37. Karmaker A., Prasad A., Effect of design parameters on the flexural properties of fiber-reinforced composites. Journal of Materials Science Letter, 19 (2000).Search in Google Scholar

38. Dyzia M., Dolata A., J., Śleziona J., Preliminary Analysis of Aluminum Matrix Compositions for Composites Reinforcement with Carbon Fibers, Steel Research International, 83(10), 2012.10.1002/srin.201100280Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials