Open Access

Development of a Distributed Outlier Detection Method Based on the Alternating Direction Method of Multipliers

,  and   
Jun 26, 2025

Cite
Download Cover

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection”, Journal of Signal Processing Systems, vol. 79, no. 2, 2015, pp. 179–188, doi:10.1007/s11265-014-0913-0. A. Adler M. Elad Y. Hel-Or E. Rivlin Sparse coding with anomaly detection ”, Journal of Signal Processing Systems , vol. 79 , no. 2 , 2015 , pp. 179 188 , 10.1007/s11265-014-0913-0 . Open DOISearch in Google Scholar

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls”, ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, 1996, pp. 469–483, doi:10.1145/235815.235821. C. B. Barber D. P. Dobkin H. Huhdanpaa The quickhull algorithm for convex hulls ”, ACM Transactions on Mathematical Software (TOMS) , vol. 22 , no. 4 , 1996 , pp. 469 483 , 10.1145/235815.235821 . Open DOISearch in Google Scholar

A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection”, ACM Computing Surveys, vol. 53, no. 3, 2021, pp. 1–37, doi:10.1145/3381028. A. Boukerche L. Zheng O. Alfandi Outlier detection ”, ACM Computing Surveys , vol. 53 , no. 3 , 2021 , pp. 1 37 , 10.1145/3381028 . Open DOISearch in Google Scholar

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers”, vol. 3, no. 1, 2010, pp. 1–122, doi:10.1561/2200000016. S. Boyd N. Parikh E. Chu B. Peleato J. Eck-stein Distributed optimization and statistical learning via the alternating direction method of multipliers ”, vol. 3 , no. 1 , 2010 , pp. 1 122 , 10.1561/2200000016 . Open DOISearch in Google Scholar

S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004. S. P. Boyd L. Vandenberghe Convex optimization , Cambridge University Press , 2004 . Search in Google Scholar

P. Casale, O. Pujol, and P. Radeva, “Approximate convex hulls family for one-class classification”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6713 LNCS, 2011, pp. 106–115, doi:10.1007/978-3- 642-21557-5_13. P. Casale O. Pujol P. Radeva Approximate convex hulls family for one-class classification ”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 6713 LNCS, 2011 , pp. 106 115 , 10.1007/978-3- 642-21557-5_13 . Open DOISearch in Google Scholar

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection”, ACM Computing Surveys, vol. 41, no. 3, 2009, pp. 1–58, doi:10.1145/1541880.1541882. V. Chandola A. Banerjee V. Kumar Anomaly detection ”, ACM Computing Surveys , vol. 41 , no. 3 , 2009 , pp. 1 58 , 10.1145/1541880.1541882 . Open DOISearch in Google Scholar

W.-C. Chang, C.-P. Lee, ·. Chih, and J. Lin. “A revisit to support vector data description”. Technical report, Department of Computer Science at National Taiwan University, Taipei, Taiwan, 2013. W.-C. Chang C.-P. Lee ·. Chih J. Lin . “ A revisit to support vector data description ”. Technical report , Department of Computer Science at National Taiwan University , Taipei, Taiwan , 2013 . Search in Google Scholar

R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation of outlier detection algorithms: Experiments and analyses”, Pattern Recognition, vol. 74, 2018, pp. 406– 421, doi:10.1016/J.PATCOG.2017.09.037. R. Domingues M. Filippone P. Michiardi J. Zouaoui A comparative evaluation of outlier detection algorithms: Experiments and analy-ses ”, Pattern Recognition , vol. 74 , 2018 , pp. 406 421 , 10.1016/J.PATCOG.2017.09.037 . Open DOISearch in Google Scholar

J. Eckstein and W. Yao. “Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives”. Technical report, 2015. J. Eckstein W. Yao Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational per-spectives ”. Technical report , 2015 . Search in Google Scholar

M. Fukushima, “Application of the alternating direction method of multipliers to separable convex programming problems”, Computational Optimization and Applications, vol. 1, no. 1, 1992, pp. 93–111, doi:10.1007/BF00247655. M. Fukushima Application of the alternating direction method of multipliers to separable convex programming problems ”, Computational Optimization and Applications , vol. 1 , no. 1 , 1992 , pp. 93 111 , 10.1007/BF00247655 . Open DOISearch in Google Scholar

W. Hilal, S. A. Gadsden, and J. Yawney, “Financial fraud”, Expert Systems with Applications, vol. 193, 2022, doi:10.1016/J.ESWA.2021.116429. W. Hilal S. A. Gadsden J. Yawney Financial fraud ”, Expert Systems with Applications , vol. 193 , 2022 , 10.1016/J.ESWA.2021.116429 . Open DOISearch in Google Scholar

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, “Correcting sample selection bias by unlabeled data”, NIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems, 2006, pp. 601– 608, doi:10.7551/mitpress/7503.003.0080. J. Huang A. J. Smola A. Gretton K. M. Borgwardt B. Schölkopf Correcting sample selection bias by unlabeled data ”, NIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems , 2006 , pp. 601 608 , 10.7551/mitpress/7503.003.0080 . Open DOISearch in Google Scholar

I. Kalliantzis, A. N. Papadopoulos, A. Gounaris, and K. Tsichlas. “Efficient distributed outlier detection in data streams”. Technical report, 2019. I. Kalliantzis A. N. Papadopoulos A. Gounaris K. Tsichlas Efficient distributed outlier detection in data streams ”. Technical report , 2019 . Search in Google Scholar

T. Kanamori, S. Hido, and M. Sugiyama, “Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection”, Advances in Neural Information Processing Systems 21-Proceedings of the 2008 Conference, 2009, pp. 809–816. T. Kanamori S. Hido M. Sugiyama Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection ”, Advances in Neural Information Processing Systems 21-Proceedings of the 2008 Conference , 2009 , pp. 809 816 . Search in Google Scholar

J. D. Kelleher, B. Mac Namee, and D’Arcy Aoife, Fundamentals of machine learning for predictive data analytics, MIT Press, 2020. J. D. Kelleher B. Mac Namee D’Arcy Aoife Fundamentals of machine learning for predictive data analytics , MIT Press , 2020 . Search in Google Scholar

C.-N. Li, Y.-H. Shao, W. Yin, and M.-Z. Liu, “Robust and sparse linear discriminant analysis via an alternating direction method of multipliers”, IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 3, 2020, pp. 915– 926, doi:10.1109/TNNLS.2019.2910991. C.-N. Li Y.-H. Shao W. Yin M.-Z. Liu Robust and sparse linear discriminant analysis via an alternating direction method of multipliers ”, IEEE Transactions on Neural Networks and Learning Systems , vol. 31 , no. 3 , 2020 , pp. 915 926 , 10.1109/TNNLS.2019.2910991 . Open DOISearch in Google Scholar

M. M. Moya and D. R. Hush, “Network constraints and multi-objective optimization for one-class classification”, Neural Networks, vol. 9, no. 3, 1996, pp. 463–474, doi:10.1016/0893- 6080(95)00120-4. M. M. Moya D. R. Hush Network constraints and multi-objective optimization for one-class classification ”, Neural Networks , vol. 9 , no. 3 , 1996 , pp. 463 474 , 10.1016/0893-6080(95)00120-4 . Open DOISearch in Google Scholar

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: machine learning in Python”, Journal of Machine Learning Research, vol. 12, no. 85, 2011, pp. 2825–2830. F. Pedregosa G. Varoquaux A. Gramfort V. Michel B. Thirion O. Grisel M. Blondel P. Prettenhofer R. Weiss V. Dubourg J. Vanderplas A. Passos D. Cournapeau M. Brucher M. Perrot É. Duchesnay Scikit-learn: machine learning in Python ”, Journal of Machine Learning Research , vol. 12 , no. 85 , 2011 , pp. 2825 2830 . Search in Google Scholar

N. R. Prasad, S. Almanza-Garcia, and T. T. Lu, “Anomaly detection”, Computers, Materials and Continua, vol. 14, no. 1, 2009, pp. 1–22, doi:10.3970/cmc.2009.014.001. N. R. Prasad S. Almanza-Garcia T. T. Lu Anomaly detection ”, Computers, Materials and Continua , vol. 14 , no. 1 , 2009 , pp. 1 22 , 10.3970/cmc.2009.014.001 . Open DOISearch in Google Scholar

N. N. R. Ranga Suri, N. Murty M, and G. Athithan, Outlier detection: Techniques and applications, Intelligent Systems Reference Library, Springer International Publishing, 2019, doi:10.1007/978-3-030-05127-3. N. N. R. Ranga Suri N. Murty M G. Athithan Outlier detection: Techniques and applications, Intelligent Systems Reference Library , Springer International Publishing , 2019 , 10.1007/978-3-030-05127-3 . Open DOISearch in Google Scholar

G. Ranganathan, “Real time anomaly detection techniques using PySpark frame Work”, Journal of Artificial Intelligence and Capsule Networks, vol. 2, no. 1, 2020, pp. 20–30, doi:10.36548/jaicn.2020.1.003. G. Ranganathan Real time anomaly detection techniques using PySpark frame Work ”, Journal of Artificial Intelligence and Capsule Networks , vol. 2 , no. 1 , 2020 , pp. 20 30 , 10.36548/jaicn.2020.1.003 . Open DOISearch in Google Scholar

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution”, Neural Computation, vol. 13, no. 7, 2001, pp. 1443–1471, doi:10.1162/089976601750264965. B. Schölkopf J. C. Platt J. Shawe-Taylor A. J. Smola R. C. Williamson Estimating the support of a high-dimensional distribution ”, Neural Computation , vol. 13 , no. 7 , 2001 , pp. 1443 1471 , 10.1162/089976601750264965 . Open DOISearch in Google Scholar

B. Schölkopf, R. C. Williamson, A. Smola, and J. Shawe-Taylor, “SV estimation ofa distribution’s support”. In: Neural Information Processing Systems (NIPS), 2000, pp. 582–588. B. Schölkopf R. C. Williamson A. Smola J. Shawe-Taylor SV estimation ofa distribution’s support ”. In: Neural Information Processing Systems (NIPS) , 2000 , pp. 582 588 . Search in Google Scholar

D. M. Tax and R. P. Duin, “Support vector data description”, Machine Learning, vol. 54, no. 1, 2004, pp. 45–66, doi:10.1023/B:MACH.0000008084.60811.49. D. M. Tax R. P. Duin Support vector data description ”, Machine Learning , vol. 54 , no. 1 , 2004 , pp. 45 66 , 10.1023/B:MACH.0000008084.60811.49 . Open DOISearch in Google Scholar

T. Wang, M. Cai, X. Ouyang, Z. Cao, T. Cai, X. Tan, and X. Lu, “Anomaly detection based on convex analysis: A survey”, Frontiers in Physics, vol. 10, 2022, pp. 873–848, doi:10.3389/FPHY.2022.873848/BIBTEX. T. Wang M. Cai X. Ouyang Z. Cao T. Cai X. Tan X. Lu Anomaly detection based on convex analysis: A survey ”, Frontiers in Physics , vol. 10 , 2022 , pp. 873 848 , 10.3389/FPHY.2022.873848/BIBTEX . Open DOISearch in Google Scholar

K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström low-rank approximation and error analysis”. In: Proceedings of the 25th international conference on Machine learning-ICML ‘08, New York, New York, USA, 2008, pp. 1232–1239, doi:10.1145/1390156.1390311. K. Zhang I. W. Tsang J. T. Kwok Improved Nyström low-rank approximation and error analysis ”. In: Proceedings of the 25th international conference on Machine learning-ICML ‘08 , New York, New York, USA , 2008 , pp. 1232 1239 , 10.1145/1390156.1390311 . Open DOISearch in Google Scholar

S. Zhang, V. Ursekar, and L. Akoglu, “Sparx: Distributed outlier detection at scale”. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2022, pp. 4530–4540, doi:10.1145/3534678.3539076. S. Zhang V. Ursekar L. Akoglu Sparx: Distributed outlier detection at scale ”. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining , New York, NY, USA , 2022 , pp. 4530 4540 , 10.1145/3534678.3539076 . Open DOISearch in Google Scholar

Y. Zhao, PyOD documentacion release 1.0.9, USC, 2023. Y. Zhao PyOD documentacion release 1.0.9 , USC , 2023 . Search in Google Scholar

Y. Zhao, Z. Nasrullah, and Z. Li. “PyOD: A Python toolbox for scalable outlier detection”. Technical report, 2019. Y. Zhao Z. Nasrullah Z. Li PyOD: A Python toolbox for scalable outlier detection ”. Technical report , 2019 . Search in Google Scholar