Zeszyty czasopisma

Tom 22 (2023): Zeszyt 1 (January 2023)

Tom 21 (2022): Zeszyt 1 (January 2022)

Tom 20 (2021): Zeszyt 1 (January 2021)

Tom 19 (2020): Zeszyt 1 (December 2020)

Tom 18 (2019): Zeszyt 1 (December 2019)

Tom 17 (2018): Zeszyt 1 (December 2018)

Tom 16 (2017): Zeszyt 1 (December 2017)

Tom 15 (2016): Zeszyt 1 (December 2016)

Tom 14 (2015): Zeszyt 1 (December 2015)

Tom 13 (2014): Zeszyt 1 (December 2014)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-133X
Pierwsze wydanie
11 Dec 2014
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

Wyszukiwanie

Tom 20 (2021): Zeszyt 1 (January 2021)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-133X
Pierwsze wydanie
11 Dec 2014
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

Wyszukiwanie

9 Artykułów
Otwarty dostęp

Projections of measures with small supports

Data publikacji: 21 Jan 2022
Zakres stron: 5 - 15

Abstrakt

Abstract

In this paper, we use a characterization of the mutual multifractal Hausdorff dimension in terms of auxiliary measures to investigate the projections of measures with small supports.

Słowa kluczowe

  • Multifractal analysis
  • Orthogonal projection
  • -Ahlfors regular
Otwarty dostęp

System of boundary random fractional differential equations via Hadamard derivative

Data publikacji: 21 Jan 2022
Zakres stron: 17 - 41

Abstrakt

Abstract

We study the existence of solutions for random system of fractional differential equations with boundary nonlocal initial conditions. Our approach is based on random fixed point principles of Schaefer and Perov, combined with a vector approach that uses matrices that converge to zero. We prove existence and uniqueness results for these systems. Some examples are presented to illustrate the theory.

Słowa kluczowe

  • Random fractional differential equation
  • Hadamard fractional differential equation
  • existence
  • fixed point
  • vector metric space
Otwarty dostęp

Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions

Data publikacji: 21 Jan 2022
Zakres stron: 43 - 56

Abstrakt

Abstract

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder’s and Banach’s fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

Słowa kluczowe

  • fractional diffusion
  • generalized self-similar solution
  • blow-up
  • global existence
  • uniqueness
Otwarty dostęp

Examples of non connective C*-algebras

Data publikacji: 21 Jan 2022
Zakres stron: 57 - 61

Abstrakt

Abstract

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder’s and Banach’s fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

Słowa kluczowe

  • connective - algebras
  • crystallographic groups
  • combinatorial and generalized Hantzsche-Wendt groups
Otwarty dostęp

Equivalential algebras with conjunction on the regular elements

Data publikacji: 21 Jan 2022
Zakres stron: 63 - 75

Abstrakt

Abstract

We introduce the definition of the three-element equivalential algebra R with conjunction on the regular elements. We study the variety generated by R and prove the Representation Theorem. Then, we construct the finitely generated free algebras and compute the free spectra in this variety.

Słowa kluczowe

  • Fregean varieties
  • equivalential algebras
  • free algebras
  • free spectra
Otwarty dostęp

Metrizable space of multivalued maps

Data publikacji: 21 Jan 2022
Zakres stron: 77 - 93

Abstrakt

Abstract

In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.

Słowa kluczowe

  • Diagram
  • pseudometric
  • -morphism
  • multivalued map determined by the -morphism
  • 𝔻-metric
  • metrizable space of multivalued maps
Otwarty dostęp

Wedderburn components, the index theorem and continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles

Data publikacji: 21 Jan 2022
Zakres stron: 95 - 119

Abstrakt

Abstract

We study the property of continuous Castelnuovo-Mumford regularity, for semihomogeneous vector bundles over a given Abelian variety, which was formulated in A. Küronya and Y. Mustopa [Adv. Geom. 20 (2020), no. 3, 401-412]. Our main result gives a novel description thereof. It is expressed in terms of certain normalized polynomial functions that are obtained via the Wedderburn decomposition of the Abelian variety’s endo-morphism algebra. This result builds on earlier work of Mumford and Kempf and applies the form of the Riemann-Roch Theorem that was established in N. Grieve [New York J. Math. 23 (2017), 1087-1110]. In a complementary direction, we explain how these topics pertain to the Index and Generic Vanishing Theory conditions for simple semihomogeneous vector bundles. In doing so, we refine results from M. Gulbrandsen [Matematiche (Catania) 63 (2008), no. 1, 123–137], N. Grieve [Internat. J. Math. 25 (2014), no. 4, 1450036, 31] and D. Mumford [Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100].

Słowa kluczowe

  • Abelian varieties
  • Mukai regularity
  • continuous Castelnuovo-Mumford regularity
  • semihomogeneous vector bundles
  • Generic Vanishing Theory
Otwarty dostęp

A determinantal formula for circuits of integer lattices

Data publikacji: 21 Jan 2022
Zakres stron: 121 - 127

Abstrakt

Abstract

Let L be a not necessarily saturated lattice in ℤn with a defining matrix B. We explicitly compute the set of circuits of L in terms of maximal minors of B. This has a variety of applications from toric to tropical geometry, from Gröbner to Graver bases, and from linear to binomial ideals.

Słowa kluczowe

  • Non-saturated lattices
  • circuits
Otwarty dostęp

Report of Meeting: 19th International Conference on Functional Equations and Inequalities, B¦dlewo, Poland, September 11–18, 2021

Data publikacji: 21 Jan 2022
Zakres stron: 129 - 180

Abstrakt

9 Artykułów
Otwarty dostęp

Projections of measures with small supports

Data publikacji: 21 Jan 2022
Zakres stron: 5 - 15

Abstrakt

Abstract

In this paper, we use a characterization of the mutual multifractal Hausdorff dimension in terms of auxiliary measures to investigate the projections of measures with small supports.

Słowa kluczowe

  • Multifractal analysis
  • Orthogonal projection
  • -Ahlfors regular
Otwarty dostęp

System of boundary random fractional differential equations via Hadamard derivative

Data publikacji: 21 Jan 2022
Zakres stron: 17 - 41

Abstrakt

Abstract

We study the existence of solutions for random system of fractional differential equations with boundary nonlocal initial conditions. Our approach is based on random fixed point principles of Schaefer and Perov, combined with a vector approach that uses matrices that converge to zero. We prove existence and uniqueness results for these systems. Some examples are presented to illustrate the theory.

Słowa kluczowe

  • Random fractional differential equation
  • Hadamard fractional differential equation
  • existence
  • fixed point
  • vector metric space
Otwarty dostęp

Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions

Data publikacji: 21 Jan 2022
Zakres stron: 43 - 56

Abstrakt

Abstract

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder’s and Banach’s fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

Słowa kluczowe

  • fractional diffusion
  • generalized self-similar solution
  • blow-up
  • global existence
  • uniqueness
Otwarty dostęp

Examples of non connective C*-algebras

Data publikacji: 21 Jan 2022
Zakres stron: 57 - 61

Abstrakt

Abstract

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder’s and Banach’s fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

Słowa kluczowe

  • connective - algebras
  • crystallographic groups
  • combinatorial and generalized Hantzsche-Wendt groups
Otwarty dostęp

Equivalential algebras with conjunction on the regular elements

Data publikacji: 21 Jan 2022
Zakres stron: 63 - 75

Abstrakt

Abstract

We introduce the definition of the three-element equivalential algebra R with conjunction on the regular elements. We study the variety generated by R and prove the Representation Theorem. Then, we construct the finitely generated free algebras and compute the free spectra in this variety.

Słowa kluczowe

  • Fregean varieties
  • equivalential algebras
  • free algebras
  • free spectra
Otwarty dostęp

Metrizable space of multivalued maps

Data publikacji: 21 Jan 2022
Zakres stron: 77 - 93

Abstrakt

Abstract

In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.

Słowa kluczowe

  • Diagram
  • pseudometric
  • -morphism
  • multivalued map determined by the -morphism
  • 𝔻-metric
  • metrizable space of multivalued maps
Otwarty dostęp

Wedderburn components, the index theorem and continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles

Data publikacji: 21 Jan 2022
Zakres stron: 95 - 119

Abstrakt

Abstract

We study the property of continuous Castelnuovo-Mumford regularity, for semihomogeneous vector bundles over a given Abelian variety, which was formulated in A. Küronya and Y. Mustopa [Adv. Geom. 20 (2020), no. 3, 401-412]. Our main result gives a novel description thereof. It is expressed in terms of certain normalized polynomial functions that are obtained via the Wedderburn decomposition of the Abelian variety’s endo-morphism algebra. This result builds on earlier work of Mumford and Kempf and applies the form of the Riemann-Roch Theorem that was established in N. Grieve [New York J. Math. 23 (2017), 1087-1110]. In a complementary direction, we explain how these topics pertain to the Index and Generic Vanishing Theory conditions for simple semihomogeneous vector bundles. In doing so, we refine results from M. Gulbrandsen [Matematiche (Catania) 63 (2008), no. 1, 123–137], N. Grieve [Internat. J. Math. 25 (2014), no. 4, 1450036, 31] and D. Mumford [Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100].

Słowa kluczowe

  • Abelian varieties
  • Mukai regularity
  • continuous Castelnuovo-Mumford regularity
  • semihomogeneous vector bundles
  • Generic Vanishing Theory
Otwarty dostęp

A determinantal formula for circuits of integer lattices

Data publikacji: 21 Jan 2022
Zakres stron: 121 - 127

Abstrakt

Abstract

Let L be a not necessarily saturated lattice in ℤn with a defining matrix B. We explicitly compute the set of circuits of L in terms of maximal minors of B. This has a variety of applications from toric to tropical geometry, from Gröbner to Graver bases, and from linear to binomial ideals.

Słowa kluczowe

  • Non-saturated lattices
  • circuits
Otwarty dostęp

Report of Meeting: 19th International Conference on Functional Equations and Inequalities, B¦dlewo, Poland, September 11–18, 2021

Data publikacji: 21 Jan 2022
Zakres stron: 129 - 180

Abstrakt