Otwarty dostęp

The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model


Zacytuj

Jean-François F, Elezgaray J, Berson P, Vacher P, Dufourc EJ. Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophysical Journal. 2008; 95(12):574856. http://dx.doi.org/10.1529/biophysj.108.136655Jean-FrançoisFElezgarayJBersonPVacherPDufourcEJPore formation induced by an antimicrobial peptide: electrostatic effectsBiophysical Journal20089512574856http://dx.doi.org/10.1529/biophysj.108.13665510.1529/biophysj.108.136655Search in Google Scholar

Cervera J, Komarov AG, Aguilella VM. Rectification properties and pH-dependent selectivity of meningococcal class 1 porin. Biophysical Journal. 2008; 94(4):1194-202. http://dx.doi.org/10.1529/biophysj.107.1161861796513110.1529/biophysj.107.116186CerveraJKomarovAGAguilellaVMRectification properties and pH-dependent selectivity of meningococcal class 1 porinBiophysical Journal20089441194202http://dx.doi.org/10.1529/biophysj.107.116186Search in Google Scholar

Constantin D, Siwy ZS. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E. 2007; 76(4):041202. http://dx.doi.org/10.1103/PhysRevE.76.04120210.1103/PhysRevE.76.041202ConstantinDSiwyZSPoisson-Nernst-Planck model of ion current rectification through a nanofluidic diodePhysical Review E2007764041202http://dx.doi.org/10.1103/PhysRevE.76.041202Open DOISearch in Google Scholar

Ramírez P, Gómez V, Cervera J, Schiedt B, Mafé S. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics. 2007; 126:194703. http://dx.doi.org/10.1063/1.27356081752382410.1063/1.2735608RamírezPGómezVCerveraJSchiedtBMaféSIon transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributionsThe Journal of Chemical Physics2007126194703http://dx.doi.org/10.1063/1.2735608Search in Google Scholar

Hänggi P, Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics. 2009; 81(1):387. http://dx.doi.org/10.1103/RevModPhys.81.38710.1103/RevModPhys.81.387HänggiPMarchesoniFArtificial Brownian motors: Controlling transport on the nanoscaleReviews of Modern Physics2009811387http://dx.doi.org/10.1103/RevModPhys.81.387Open DOISearch in Google Scholar

Bazant MZ, Squires TM. Induced-charge electrokinetic phenomena. Current Opinion in Colloid & Interface Science. 2010; 15(3):203-13. http://dx.doi.org/10.1016/j.cocis.2010.01.00310.1016/j.cocis.2010.01.003BazantMZSquiresTMInduced-charge electrokinetic phenomenaCurrent Opinion in Colloid & Interface Science201015320313http://dx.doi.org/10.1016/j.cocis.2010.01.003Open DOISearch in Google Scholar

Chizmadzhev YA, Zarnitsin VG, Weaver JC, Potts RO. Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophysical Journal. 1995; 68(3):749-65. http://dx.doi.org/10.1016/S0006-3495(95)80250-X775654210.1016/S0006-3495(95)80250-XChizmadzhevYAZarnitsinVGWeaverJCPottsROMechanism of electroinduced ionic species transport through a multilamellar lipid systemBiophysical Journal199568374965http://dx.doi.org/10.1016/S0006-3495(95)80250-XSearch in Google Scholar

Weaver JC, Vaughan TE, Chizmadzhev Y. Theory of electrical creation of aqueous pathways across skin transport barriers. Advanced Drug Delivery Reviews. 1999; 35(1):2139. http://dx.doi.org/10.1016/S0169-409X(98)00061-1WeaverJCVaughanTEChizmadzhevYTheory of electrical creation of aqueous pathways across skin transport barriersAdvanced Drug Delivery Reviews19993512139http://dx.doi.org/10.1016/S0169-409X(98)00061-110.1016/S0169-409X(98)00061-1Search in Google Scholar

Li J, Lin H. The current-voltage relation for electropores with conductivity gradients. Biomicrofluidics. 2010; 4:013206. http://dx.doi.org/10.1063/1.332484710.1063/1.3324847LiJLinHThe current-voltage relation for electropores with conductivity gradientsBiomicrofluidics20104013206http://dx.doi.org/10.1063/1.3324847290526620644669Open DOISearch in Google Scholar

Kuyucak S, Andersen OS, Chung SH. Models of permeation in ion channels. Reports on Progress in Physics. 2001; 64:1427. http://dx.doi.org/10.1088/0034-4885/64/11/20210.1088/0034-4885/64/11/202KuyucakSAndersenOSChungSHModels of permeation in ion channelsReports on Progress in Physics2001641427http://dx.doi.org/10.1088/0034-4885/64/11/202Open DOISearch in Google Scholar

Bazant MZ, Kilic MS, Storey BD, Ajdari A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Advances in Colloid and Interface Science. 2009; 152(1-2):48-88. http://dx.doi.org/10.1016/j.cis.2009.10.0011987955210.1016/j.cis.2009.10.001BazantMZKilicMSStoreyBDAjdariATowards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutionsAdvances in Colloid and Interface Science20091521-24888http://dx.doi.org/10.1016/j.cis.2009.10.001Search in Google Scholar

DeBruin KA, Krassowska W. Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophysical Journal. 1999; 77(3):1225-33. http://dx.doi.org/10.1016/S0006-3495(99)76974-210.1016/S0006-3495(99)76974-2DeBruinKAKrassowskaWModeling electroporation in a single cell. II. Effects of ionic concentrationsBiophysical Journal1999773122533http://dx.doi.org/10.1016/S0006-3495(99)76974-2Open DOISearch in Google Scholar

Neumcke B, Läuger P. Nonlinear electrical effects in lipid bilayer membranes: II. Integration of the generalized Nernst-Planck equations. Biophysical Journal. 1969; 9(9):1160-70. http://dx.doi.org/10.1016/S0006-3495(69)86443-X10.1016/S0006-3495(69)86443-X5807223NeumckeBLäugerPNonlinear electrical effects in lipid bilayer membranes: II. Integration of the generalized Nernst-Planck equationsBiophysical Journal196999116070http://dx.doi.org/10.1016/S0006-3495(69)86443-XOpen DOISearch in Google Scholar

Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E. 2007; 75(2):021502. http://dx.doi.org/10.1103/PhysRevE.75.02150210.1103/PhysRevE.75.021502KilicMSBazantMZAjdariASteric effects in the dynamics of electrolytes at large applied voltagesI. Double-layer charging. Physical Review E2007752021502http://dx.doi.org/10.1103/PhysRevE.75.021502Open DOISearch in Google Scholar

Levitt D. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophysical Journal. 1978; 22(2):209-19. http://dx.doi.org/10.1016/S0006-3495(78)85485-X65654210.1016/S0006-3495(78)85485-XLevittDElectrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ionsBiophysical Journal197822220919http://dx.doi.org/10.1016/S0006-3495(78)85485-XSearch in Google Scholar

Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1988; 940(2):275-87. http://dx.doi.org/10.1016/0005-2736(88)90202-710.1016/0005-2736(88)90202-7GlaserRWLeikinSLChernomordikLVPastushenkoVFSokirkoAIReversible electrical breakdown of lipid bilayers: formation and evolution of poresBiochimica et Biophysica Acta (BBA)-Biomembranes1988940227587http://dx.doi.org/10.1016/0005-2736(88)90202-7Open DOISearch in Google Scholar

Glaser R. Appearance of a “critical voltage” in reversible electric breakdown. Studia Biophysica. 1986; 116:77-86.GlaserRAppearance of a “critical voltage” in reversible electric breakdownStudia Biophysica19861167786Search in Google Scholar

Bolintineanu DS, Sayyed-Ahmad A, Davis HT, Kaznessis YN. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol. 2009; 5(1):1-12. http://dx.doi.org/10.1371/journal.pcbi.1000277BolintineanuDSSayyed-AhmadADavisHTKaznessisYNPoisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane porePLoS Comput Biol200951112http://dx.doi.org/10.1371/journal.pcbi.100027710.1371/journal.pcbi.1000277261446919180178Search in Google Scholar

Heimburg T. Lipid ion channels. Biophysical Chemistry. 2010; 150(1-3):2-22. http://dx.doi.org/10.1016/j.bpc.2010.02.01810.1016/j.bpc.2010.02.01820385440HeimburgTLipid ion channelsBiophysical Chemistry20101501-3222http://dx.doi.org/10.1016/j.bpc.2010.02.01820385440Open DOISearch in Google Scholar

He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS. Tuning transport properties of nanofluidic devices with local charge inversion. Journal of the American Chemical Society. 2009; 131(14):5194-202. http://dx.doi.org/10.1021/ja808717u1931749010.1021/ja808717uHeYGillespieDBodaDVlassioukIEisenbergRSSiwyZSTuning transport properties of nanofluidic devices with local charge inversionJournal of the American Chemical Society2009131145194202http://dx.doi.org/10.1021/ja808717u271476719317490Search in Google Scholar

Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. Nature Reviews Neuroscience. 2001; 2(6):387-96. http://dx.doi.org/10.1038/350775441138947210.1038/35077544ClaphamDERunnelsLWStrübingCThe TRP ion channel familyNature Reviews Neuroscience20012638796http://dx.doi.org/10.1038/3507754411389472Search in Google Scholar

von Kitzing E, Soumpasis DM. Electrostatics of a simple membrane model using Green's functions formalism. Biophysical Journal. 1996; 71(2): 795-810. http://dx.doi.org/10.1016/S0006-3495(96)79281-0884221810.1016/S0006-3495(96)79281-0von KitzingESoumpasisDMElectrostatics of a simple membrane model using Green's functions formalismBiophysical Journal1996712795810http://dx.doi.org/10.1016/S0006-3495(96)79281-0Search in Google Scholar

Wijesinghe R, Coorey N, Kuyucak S. Charge state of the fast gate in chloride channels: Insights from electrostatic calculations in a schematic model. The Journal of Chemical Physics. 2007; 127:195102. http://dx.doi.org/10.1063/1.280441910.1063/1.2804419WijesingheRCooreyNKuyucakSCharge state of the fast gate in chloride channels: Insights from electrostatic calculations in a schematic modelThe Journal of Chemical Physics2007127195102http://dx.doi.org/10.1063/1.280441918035906Open DOISearch in Google Scholar

Chang HC, Yossifon G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics. 2009; 3:0120011--15. http://dx.doi.org/10.1063/1.305604519693382ChangHCYossifonGUnderstanding electrokinetics at the nanoscale: A perspectiveBiomicrofluidics200930120011--15http://dx.doi.org/10.1063/1.305604510.1063/1.3056045271760319693382Search in Google Scholar

Cervera J, Schiedt B, Neumann R, Mafé S, Ramírez P. Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics. 2006; 124:104706-1--9. http://dx.doi.org/10.1063/1.217979716542096CerveraJSchiedtBNeumannRMaféSRamírezPIonic conduction, rectification, and selectivity in single conical nanoporesThe Journal of Chemical Physics2006124104706-1--9http://dx.doi.org/10.1063/1.217979710.1063/1.217979716542096Search in Google Scholar

Cruz-Chu ER, Aksimentiev A, Schulten K. Ionic current rectification through silica nanopores. The Journal of Physical Chemistry C. 2009; 113(5):1850-62. http://dx.doi.org/10.1021/jp804724p10.1021/jp804724pCruz-ChuERAksimentievASchultenKIonic current rectification through silica nanoporesThe Journal of Physical Chemistry C20091135185062http://dx.doi.org/10.1021/jp804724p265861420126282Open DOISearch in Google Scholar

Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH. Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochemical and Biophysical Research Communications. 2009; 385(2):181-6. http://dx.doi.org/10.1016/j.bbrc.2009.05.03510.1016/j.bbrc.2009.05.035PakhomovAGBowmanAMIbeyBLAndreFMPakhomovaONSchoenbachKHLipid nanopores can form a stable, ion channel-like conduction pathway in cell membraneBiochemical and Biophysical Research Communications200938521816http://dx.doi.org/10.1016/j.bbrc.2009.05.035273913219450553Open DOISearch in Google Scholar

Kosinska I. How the asymmetry of internal potential influences the shape of IV characteristic of nanochannels. The Journal of Chemical Physics. 2006; 124:244707. http://dx.doi.org/10.1063/1.221239410.1063/1.2212394KosinskaIHow the asymmetry of internal potential influences the shape of IV characteristic of nanochannelsThe Journal of Chemical Physics2006124244707http://dx.doi.org/10.1063/1.221239416821996Open DOISearch in Google Scholar

Kosinska I, Goychuk I, Kostur M, Schmid G, Hänggi P. Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E. 2008; 77(3):031131. http://dx.doi.org/10.1103/PhysRevE.77.03113110.1103/PhysRevE.77.031131KosinskaIGoychukIKosturMSchmidGHänggiPRectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck modelPhysical Review E2008773031131http://dx.doi.org/10.1103/PhysRevE.77.03113118517353Open DOISearch in Google Scholar

Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics: Academic Press 2008.GrimnesSMartinsenØGBioimpedance and bioelectricity basicsAcademic Press200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar

van Boxtel A. Skin resistance during square-wave electrical pulses of 1 to 10 mA. Medical and Biological Engineering and Computing. 1977; 15(6):679-87. http://dx.doi.org/10.1007/BF0245792710.1007/BF02457927vanBoxtel ASkin resistance during square-wave electrical pulses of 1 to 10 mAMedical and Biological Engineering and Computing197715667987http://dx.doi.org/10.1007/BF02457927203791Open DOISearch in Google Scholar

Yamamoto T, Yamamoto Y. Non-linear electrical properties of skin in the low frequency range. Medical and Biological Engineering and Computing. 1981; 19(3):302-10. http://dx.doi.org/10.1007/BF0244254910.1007/BF02442549YamamotoTYamamotoYNon-linear electrical properties of skin in the low frequency rangeMedical and Biological Engineering and Computing198119330210http://dx.doi.org/10.1007/BF02442549Open DOISearch in Google Scholar

Grimnes S. Skin impedance and electro-osmosis in the human epidermis. Medical and Biological Engineering and Computing. 1983; 21(6):739-49. http://dx.doi.org/10.1007/BF0246403710.1007/BF02464037GrimnesSSkin impedance and electro-osmosis in the human epidermisMedical and Biological Engineering and Computing198321673949http://dx.doi.org/10.1007/BF02464037Open DOISearch in Google Scholar

Lochner GP. The voltage-current characteristic of the human skin. Pretoria, South Africa: University of Pretoria; 2003.LochnerGPThe voltage-current characteristic of the human skinPretoria, South AfricaUniversity of Pretoria2003Search in Google Scholar

Bîrlea N, Bîrlea S, Tosa V. The skin's electrical asymmetry. Journal of Physics: Conference Series. 2009; 182(1):012020. http://dx.doi.org/10.1088/1742-6596/182/1/012020BîrleaNBîrleaSTosaVThe skin's electrical asymmetryJournal of Physics: Conference Series20091821012020http://dx.doi.org/10.1088/1742-6596/182/1/01202010.1088/1742-6596/182/1/012020Search in Google Scholar

Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophysical Journal. 1998; 74(2):843-56. http://dx.doi.org/10.1016/S0006-3495(98)74008-1953369610.1016/S0006-3495(98)74008-1ChizmadzhevYAIndenbomAVKuzminPIGalichenkoSVWeaverJCPottsROElectrical properties of skin at moderate voltages: contribution of appendageal macroporesBiophysical Journal199874284356http://dx.doi.org/10.1016/S0006-3495(98)74008-1Search in Google Scholar

Li SK, Ghanem AH, Peck KD, Higuchi WI. Pore induction in human epidermal membrane during low to moderate voltage iontophoresis: A study using AC iontophoresis. Journal of Pharmaceutical Sciences. 1999; 88(4):419-27. http://dx.doi.org/10.1021/js980331y10.1021/js980331y10187752LiSKGhanemAHPeckKDHiguchiWIPore induction in human epidermal membrane during low to moderate voltage iontophoresis: A study using AC iontophoresisJournal of Pharmaceutical Sciences199988441927http://dx.doi.org/10.1021/js980331y10187752Open DOISearch in Google Scholar

Xu Q, Kochambilli RP, Song Y, Hao J, Higuchi WI, Li SK. Effects of alternating current frequency and permeation enhancers upon human epidermal membrane. International Journal of Pharmaceutics. 2009; 372(1-2):24-32. http://dx.doi.org/10.1016/j.ijpharm.2008.12.03610.1016/j.ijpharm.2008.12.03619166921XuQKochambilliRPSongYHaoJHiguchiWILiSKEffects of alternating current frequency and permeation enhancers upon human epidermal membraneInternational Journal of Pharmaceutics20093721-22432http://dx.doi.org/10.1016/j.ijpharm.2008.12.036272372019166921Open DOISearch in Google Scholar