Otwarty dostęp

Electrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT


Zacytuj

Holder DS, Hanquan Y and Rao A, Some practical biological phantoms for calibrating multifrequency electrical impedance tomography, Physiol. Meas. 1996; 17: A167-A177. 10.1088/0967-3334/17/4A/02110.1088/0967-3334/17/4A/0219001615HolderDSHanquanYRaoASome practical biological phantoms for calibrating multifrequency electrical impedance tomographyPhysiol. Meas199617A167A17710.1088/0967-3334/17/4A/021Open DOISearch in Google Scholar

Bera TK and Nagaraju J, Resistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance Tomography, Measurement. 2011; 44(3): 518-526. 10.1016/j.measurement.2010.11.01510.1016/j.measurement.2010.11.015BeraTKNagarajuJResistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance TomographyMeasurement201144351852610.1016/j.measurement.2010.11.015Open DOISearch in Google Scholar

Soni NK, Dehghani H, Hartov A and Paulsen KD, A novel data calibration scheme for electrical impedance tomography, Physiol. Meas. 2003; 24: 421–435. 10.1088/0967-3334/24/2/35410.1088/0967-3334/24/2/35412812427SoniNKDehghaniHHartovAPaulsenKDA novel data calibration scheme for electrical impedance tomographyPhysiol. Meas20032442143510.1088/0967-3334/24/2/35412812427Open DOISearch in Google Scholar

Bera TK and Nagaraju J, A Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom, Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), Bangalore, August 22 to 25, 2009; pp. 347-352. 10.1109/COASE.2009.5234117BeraTKNagarajuJA Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode PhantomProceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009 Bangalore, August 22 to 25200934735210.1109/COASE.2009.523411710.1109/COASE.2009.5234117Search in Google Scholar

Ahn S, Jun SC, Seo JK, Lee J, Woo EJ and Holder D, Frequency-difference electrical impedance tomography: phantom imaging experiments, Journal of Physics: Conference Series. 2010; 224: 012152. 10.1088/1742-6596/224/1/012152AhnSJunSCSeoJKLeeJWooEJHolderDFrequency-difference electrical impedance tomography: phantom imaging experimentsJournal of Physics: Conference Series201022401215210.1088/1742-6596/224/1/01215210.1088/1742-6596/224/1/012152Search in Google Scholar

Bera TK and Nagaraju J, A Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver, 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), School of Mathematics, The University of Manchester, UK. 16th-19th June 2009. URL:www.maths.manchester.ac.uk/eit2009/abstracts/bera.pdfBeraTKNagarajuJA Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009 School of MathematicsThe University of ManchesterUK16th-19th June 2009. URLwww.maths.manchester.ac.uk/eit2009/abstracts/bera.pdfSearch in Google Scholar

Bera TK and Nagaraju J, A FEM-Based Forward Solver for Studying the Forward Problem of Electrical Impedance Tomography (EIT) with A Practical Biological Phantom, Proceedings of IEEE International Advance Computing Conference' 2009 (IEEE IACC - 2009), Patiala, Punjab, India. 6th-7th March 2009; pp 1375 - 1381. 10.1109/IADCC.2009.4809217BeraTKNagarajuJA FEM-Based Forward Solver for Studying the Forward Problem of Electrical Impedance Tomography (EIT) with A Practical Biological PhantomProceedings of IEEE International Advance Computing Conference' 2009 (IEEE IACC - 2009)Patiala, Punjab, India6th-7th March 20091375138110.1109/IADCC.2009.480921710.1109/IADCC.2009.4809217Search in Google Scholar

Bera TK and Nagaraju J, Studying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode Geometries, Proceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–12, 2009, Munich, Germany, IFMBE Proceedings 25/II. 2009; pp. 925–929. 10.1007/978-3-642-03879-2_258BeraTKNagarajuJStudying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode GeometriesProceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–122009Munich, GermanyIFMBE Proceedings 25/II. 2009;92592910.1007/978-3-642-03879-2_25810.1007/978-3-642-03879-2_258Search in Google Scholar

Bera TK and Nagaraju J, A Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT), Sensors & Transducers Journal. 2009; 104(5): 33-40.BeraTKNagarajuJA Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT)Sensors & Transducers Journal200910453340Search in Google Scholar

Griffiths H, A phantom for electrical impedance tomography, Clin. Phys. Physiol. Meas. 1988; 9(Suppl. A): 15-20. 10.1088/0143-0815/9/4A/00310.1088/0143-0815/9/4A/0033240643GriffithsHA phantom for electrical impedance tomographyClin. Phys. Physiol. Meas19889Suppl. A152010.1088/0143-0815/9/4A/0033240643Open DOISearch in Google Scholar

Webster JG, Electrical impedance tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York, USA. 1990.WebsterJGElectrical impedance tomography. Adam Hilger Series of Biomedical EngineeringAdam HilgerNew York, USA1990Search in Google Scholar

Cheney M, Isaacson D, Newell JC, Electrical Impedance Tomography, SIAM Review, 1999; 41(1): 85–101. 10.1137/S003614459833361310.1137/S0036144598333613CheneyMIsaacsonDNewellJCElectrical Impedance TomographySIAM Review19994118510110.1137/S0036144598333613Open DOISearch in Google Scholar

Bayford RH, Bioimpedance Tomography (Electrical Impedance Tomography), Annual Review of Biomedical Engineering. 2006; 8: 63-91. 10.1146/annurev.bioeng.8.061505.0957161683455210.1146/annurev.bioeng.8.061505.095716BayfordRHBioimpedance Tomography (Electrical Impedance Tomography)Annual Review of Biomedical Engineering20068639110.1146/annurev.bioeng.8.061505.09571616834552Search in Google Scholar

Denyer CWL, Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs, PhD Thesis, Oxford Brookes University, 1996.DenyerCWLElectronics for Real-Time and Three-Dimensional Electrical Impedance TomographsPhD ThesisOxford Brookes University1996Search in Google Scholar

Holder DS, Electrical impedance tomography: methods, history and applications (Series in Medical Physics and Biomedical Engineering), 1st Ed. Institute of Physics Publishing Ltd., UK. 2005.HolderDSElectrical impedance tomography: methods, history and applicationsInstitute of Physics Publishing LtdUK200510.1201/9781420034462Search in Google Scholar

Borcea L, Electrical impedance tomography, Topical Review, Inverse Problems. 2002; 18: R99–R136. 10.1088/0266-5611/18/6/20110.1088/0266-5611/18/6/201BorceaLElectrical impedance tomographyTopical Review, Inverse Problems200218R99R13610.1088/0266-5611/18/6/201Open DOISearch in Google Scholar

Bera TK and Nagaraju J, A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT), Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, 5th - 7th May, 2009; pp 511-516. 10.1109/IMTC.2009.5168503BeraTKNagarajuJA Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT)Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009)Singapore5th - 7th May200951151610.1109/IMTC.2009.516850310.1109/IMTC.2009.5168503Search in Google Scholar

Bera TK and Nagaraju J, A Multifrequency Constant Current Source for Medical Electrical Impedance Tomography, Proceedings of the IEEE International Conference on Systems in Medicine and Biology 2010 (IEEE ICSMB 2010), Kharagpur, India, 16th-18th Dec’2010; pp-290-295. 10.1109/ICSMB.2010.5735387BeraTKNagarajuJA Multifrequency Constant Current Source for Medical Electrical Impedance Tomography, Proceedings of the IEEE International Conference on Systems in Medicine and Biology 2010 (IEEE ICSMB 2010)Kharagpur, India16th-18th Dec’201029029510.1109/ICSMB.2010.573538710.1109/ICSMB.2010.5735387Search in Google Scholar

Lionheart WRB, EIT reconstruction algorithms: pitfalls, challenges and recent developments, Review Article, Physiol. Meas. 2004; 25: 125–142. PII: S0967-3334(04)70421-9. 10.1088/0967-3334/25/1/021LionheartWRBEIT reconstruction algorithms: pitfallschallenges and recent developments, Review Article, Physiol. Meas200425125142PII: S0967-3334(04)70421-910.1088/0967-3334/25/1/02110.1088/0967-3334/25/1/02115005311Search in Google Scholar

Graham BM, Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging, PhD thesis, University of Ottawa, April 2007.GrahamBMEnhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung ImagingPhD thesisUniversity of Ottawa2007Search in Google Scholar

Yorkey TJ, Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of. Wisconsin at Madison, Madison, WI 53706, 1986.YorkeyTJComparing reconstruction methods for electrical impedance tomographyPhD thesisUniversity of. Wisconsin at MadisonMadisonWI 537061986Search in Google Scholar

Robitaille N, Guardo R, Maurice I, Hartinger AE and Gagnon H, A multi-frequency EIT system design based on telecommunication signal processors, Physiol. Meas. 2009; 30: S57–S71. 10.1088/0967-3334/30/6/S041949144010.1088/0967-3334/30/6/S04RobitailleNGuardoRMauriceIHartingerAEGagnonHA multi-frequency EIT system design based on telecommunication signal processorsPhysiol. Meas200930S57S7110.1088/0967-3334/30/6/S0419491440Search in Google Scholar

Goharian M, Soleimani M, Jegatheesan A, Chin K and Moran GR, A DSP Based Multi-Frequency 3D Electrical Impedance Tomography System. Annals of Biomedical Engineering. 2008; 36: 1594-1603. 10.1007/s10439-008-9537-510.1007/s10439-008-9537-518629646GoharianMSoleimaniMJegatheesanAChinKMoranGRA DSP Based Multi-Frequency 3D Electrical Impedance Tomography SystemAnnals of Biomedical Engineering2008361594160310.1007/s10439-008-9537-518629646Open DOISearch in Google Scholar

Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, and Holder DS, Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration, Physiol. Meas. 2006; 27: S147–S161. 10.1088/0967-3334/27/5/S131663640710.1088/0967-3334/27/5/S13RomsauerovaAMcEwanAHoreshLYerworthRBayfordRHHolderDSMulti-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibrationPhysiol. Meas200627S147S16110.1088/0967-3334/27/5/S1316636407Search in Google Scholar

Ackmann JJ, Complex Bioelectric Impedance Measurement System for the Frequency Range from 5 Hz to 1 MHz, Annals of Biomedical Engineering. 1993; 21:135-146. 10.1007/BF02367609848456210.1007/BF02367609AckmannJJComplex Bioelectric Impedance Measurement System for the Frequency Range from 5 Hz to 1 MHzAnnals of Biomedical Engineering19932113514610.1007/BF023676098484562Search in Google Scholar

Ackmann JJ, Seitz MA., Methods of complex impedance measurements in biologic tissue, Crit Rev Biomed Eng. 1984; 11(4): 281-311.6391815AckmannJJSeitzMA.Methods of complex impedance measurements in biologic tissueCrit Rev Biomed Eng1984114281311Search in Google Scholar

Cha K, Chertow GM, Gonzalez J, Lazarus JM, and Wilmore DW, Multifrequency bioelectrical impedance estimates the distribution of body water, J Appl Physiol. 1995; 79:1316-1319.10.1152/jappl.1995.79.4.13168567578ChaKChertowGMGonzalezJLazarusJMWilmoreDWMultifrequency bioelectrical impedance estimates the distribution of body waterJ Appl Physiol199579131613198567578Open DOISearch in Google Scholar

Mouritsen OG, and Bloom M, Models of Lipid-Protein Interactions in Membranes, Annual Review of Biophysics and Biomolecular Structure. 1993; 22: 145-171. 10.1146/annurev.bb.22.060193.001045834798710.1146/annurev.bb.22.060193.001045MouritsenOGBloomMModels of Lipid-Protein Interactions in MembranesAnnual Review of Biophysics and Biomolecular Structure19932214517110.1146/annurev.bb.22.060193.0010458347987Search in Google Scholar

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, G!omez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C, Bioelectrical impedance analysis - part I: review of principles and methods, Clinical Nutrition. 2004; 23: 1226–1243. 10.1016/j.clnu.2004.06.00410.1016/j.clnu.2004.06.004KyleUGBosaeusIDeLorenzo ADDeurenbergPEliaMG!omezJMHeitmannBLKent-SmithLMelchiorJCPirlichMScharfetterHScholsAMWJPichardCBioelectrical impedance analysis - part I: review of principles and methodsClinical Nutrition2004231226124310.1016/j.clnu.2004.06.00415380917Open DOISearch in Google Scholar

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Go’mez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C, Bioelectrical impedance analysis-part II: utilization in clinical practice, Clinical Nutrition. 2004; 23: 1430–1453. 10.1016/j.clnu.2004.09.01210.1016/j.clnu.2004.09.012KyleUGBosaeusIDeLorenzo ADDeurenbergPEliaMGo’mezJMHeitmannBLKent-SmithLMelchiorJCPirlichMScharfetterHScholsAMWJPichardCBioelectrical impedance analysis-part II: utilization in clinical practiceClinical Nutrition2004231430145310.1016/j.clnu.2004.09.01215556267Open DOISearch in Google Scholar

Gudivaka R, Schoeller DA, Kushner RF, and Bolt MJG, Single and multifrequency models for bioelectrical impedance analysis of body water compartments, Journal of Applied Physiology. 1999; 87(3): 1087-1096.10.1152/jappl.1999.87.3.1087GudivakaRSchoellerDAKushnerRFBoltMJGSingle and multifrequency models for bioelectrical impedance analysis of body water compartmentsJournal of Applied Physiology19998731087109610484581Open DOISearch in Google Scholar

Kahraman A, Hilsenbeck J, Nyga M, Ertle J, Wree A, Plauth M, Gerken G, Canbay AE, Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C, Virology Journal. 2010; 7: 191. 10.1186/1743-422X-7-19110.1186/1743-422X-7-19120712878KahramanAHilsenbeckJNygaMErtleJWreeAPlauthMGerkenGCanbayAEBioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis CVirology Journal2010719110.1186/1743-422X-7-191293062520712878Open DOISearch in Google Scholar

Orazem ME, Tribollet B, Electrochemical Impedance Spectroscopy (The ECS Series of Texts and Monographs), Wiley-Interscience, 2008.OrazemMETribolletBElectrochemical Impedance Spectroscopy (The ECS Series of Texts and Monographs)Wiley-Interscience200810.1002/9780470381588Search in Google Scholar

Macdonald RJ, Impedance Spectroscopy, Annals of Biomedical Engineering. 1992; 20: 289-305. 10.1007/BF02368532144382510.1007/BF02368532MacdonaldRJImpedance SpectroscopyAnnals of Biomedical Engineering19922028930510.1007/BF023685321443825Search in Google Scholar

Houssin T, Follet J, Follet A, Dei-Cas E, Senez V, Label-free analysis of water-polluting parasite by electrochemical impedance spectroscopy, Article, Biosensors and Bioelectronics. 2010; 25(5): 1122-1129. 10.1016/j.bios.2009.09.03910.1016/j.bios.2009.09.039HoussinTFolletJFolletADei-CasESenezVLabel-free analysis of water-polluting parasite by electrochemical impedance spectroscopyArticle, Biosensors and Bioelectronics20102551122112910.1016/j.bios.2009.09.03919889527Open DOISearch in Google Scholar

Scrymgeour D. A., Highstrete C., Lee Y. J., Julia W. P. Hsu, and Lee M., High frequency impedance spectroscopy on ZnO nanorod arrays, Journal of Applied Physics. 2010; 107: 064312. 10.1063/1.331955510.1063/1.3319555ScrymgeourD. A.HighstreteC.LeeY. J.JuliaW. P. HsuLeeM.High frequency impedance spectroscopy on ZnO nanorod arraysJournal of Applied Physics201010706431210.1063/1.3319555Open DOISearch in Google Scholar

Nielsen J, Jacobsen T, Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes, Electrochimica Acta. 2010; 55(21): 6248-6254. 10.1016/j.electacta.2009.11.02810.1016/j.electacta.2009.11.028NielsenJJacobsenTCurrent distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodesElectrochimica Acta201055216248625410.1016/j.electacta.2009.11.028Open DOISearch in Google Scholar

Wu J, Ben Y and Chang HC, Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping, Microfluid Nanofluid. 2005; 1: 161-167. 10.1007/s10404-004-0024-510.1007/s10404-004-0024-5WuJBenYChangHCParticle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trappingMicrofluid Nanofluid2005116116710.1007/s10404-004-0024-5Open DOISearch in Google Scholar

Ayliffe HE, Frazier AB and Rabbitt RD, Electric Impedance Spectroscopy Using Microchannels with Integrated Metal Electrodes, IEEE Journal of Microelectromechanical Systems. 1999; 8(1): 50-57. 10.1109/84.74940210.1109/84.749402AyliffeHEFrazierABRabbittRDElectric Impedance Spectroscopy Using Microchannels with Integrated Metal ElectrodesIEEE Journal of Microelectromechanical Systems199981505710.1109/84.749402Open DOISearch in Google Scholar

Torrents JM, Juan-Garcıa P and Aguado A, Electrical impedance spectroscopy as a technique for the surveillance of civil engineering structures: considerations on the galvanic insulation of samples, Meas. Sci. Technol. 2007; 18: 1958-1962. 10.1088/0957-0233/18/7/02310.1088/0957-0233/18/7/023TorrentsJMJuan-GarcıaPAguadoAElectrical impedance spectroscopy as a technique for the surveillance of civil engineering structures: considerations on the galvanic insulation of samplesMeas. Sci. Technol2007181958196210.1088/0957-0233/18/7/023Open DOISearch in Google Scholar

Repo T, Paine DH and Taylor AG, Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.), Seed Science Research. 2002; 12: 17-29, 10.1079/SSR20019410.1079/SSR200194RepoTPaineDHTaylorAGElectrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.)Seed Science Research200212172910.1079/SSR200194Open DOISearch in Google Scholar

Repo T, Laukkanen J and Silvennoinen R, Measurement of the Tree Root Growth Using Electrical Impedance Spectroscopy, Silva Fennica. 2005; 39(2): 159–166.RepoTLaukkanenJSilvennoinenRMeasurement of the Tree Root Growth Using Electrical Impedance SpectroscopySilva Fennica200539215916610.14214/sf.380Search in Google Scholar

Maxwell JC, A Treatise on Electricity & Magnetism, vol. 1, London, Oxford Univ. Press. 1892, Chap. 10.MaxwellJCA Treatise on Electricity & Magnetism, vol. 1LondonOxford Univ. Press1892Chap. 10Search in Google Scholar

Price LRR, Electrical Impedance Computed Tomography (ICT): A New CT Imaging Technique, IEEE Transactions on Nuclear Science. 1979; NS-26(2): 2736-2739. 10.1109/TNS.1979.4330526PriceLRRElectrical Impedance Computed Tomography (ICT): A New CT Imaging TechniqueIEEE Transactions on Nuclear Science1979NS-2622736273910.1109/TNS.1979.433052610.1109/TNS.1979.4330526Search in Google Scholar

Cole KS, Electric phase angle of cell membranes, J Gen Physiol. 1932; 15: 641-649. 10.1085/jgp.15.6.6411987267310.1085/jgp.15.6.641ColeKSElectric phase angle of cell membranesJ Gen Physiol19321564164910.1085/jgp.15.6.641214119119872673Search in Google Scholar

Schwan HP, Electrical properties of tissues and cell suspensions: mechanisms and models, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1994; 1: A70-A71.SchwanHPElectrical properties of tissues and cell suspensions: mechanisms and modelsProceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society19941A70A7110.1109/IEMBS.1994.412155Search in Google Scholar

Miklavcic D, Pavselj N and Hart FX, Electric Properties of Tissues, Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, Inc. 2006, pp.-1-12.MiklavcicDPavseljNHartFXElectric Properties of Tissues, Wiley Encyclopedia of Biomedical EngineeringJohn Wiley & Sons, Inc200611210.1002/9780471740360.ebs0403Search in Google Scholar

Metherall P, Three Dimensional Electrical Impedance Tomography of the Human Thorax, PhD Thesis, University of Sheffield, UK, January 1998.MetherallPThree Dimensional Electrical Impedance Tomography of the Human ThoraxPhD ThesisUniversity of SheffieldUK1998Search in Google Scholar

The Biomedical Engineering Handbook: Second Edition, CRC Press. 2000, Chapter-89.The Biomedical Engineering Handbook: Second EditionCRC Press2000Search in Google Scholar

Barsoukov E and Macdonald JR, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition, John Wiley & Sons, Inc., 2005, Chapter-1, pp-22.BarsoukovEMacdonaldJRImpedance Spectroscopy: Theory, Experiment, and ApplicationsSecond EditionJohn Wiley & Sons, Inc2005Chapter-1, pp-2210.1002/0471716243Search in Google Scholar

Schwan HP, Linear and nonlinear electrode polarization and biological materials, Annals of Biomedical Engineering. 1992; 20: 269-288. 10.1007/BF0236853110.1007/BF023685311443824SchwanHPLinear and nonlinear electrode polarization and biological materialsAnnals of Biomedical Engineering19922026928810.1007/BF023685311443824Open DOISearch in Google Scholar