Zacytuj

Bannister A.J., Kouzarides T.: Regulation of chromatin by histone modifications. Cell Res., 2011; 21: 381–395 BannisterA.J. KouzaridesT. Regulation of chromatin by histone modifications Cell Res. 2011 21 381 395 10.1038/cr.2011.22319342021321607 Search in Google Scholar

Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., Moqtaderi Z., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K., Garcia B.A., Gozani O., Li W., Chua K.F.: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 2012; 487: 114–118 BarberM.F. Michishita-KioiE. XiY. TasselliL. KioiM. MoqtaderiZ. TennenR.I. ParedesS. YoungN.L. ChenK. StruhlK. GarciaB.A. GozaniO. LiW. ChuaK.F. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation Nature 2012 487 114 118 10.1038/nature11043341214322722849 Search in Google Scholar

Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J., Lin S.J., Guarente L.: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol., 2006; 4: e31 BordoneL. MottaM.C. PicardF. RobinsonA. JhalaU.S. ApfeldJ. McDonaghT. LemieuxM. McBurneyM. SzilvasiA. EaslonE.J. LinS.J. GuarenteL. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells PLoS Biol. 2006 4 e31 10.1371/journal.pbio.0040031131847816366736 Search in Google Scholar

Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y., Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L., Jedrychowski M.P., Gygi S.P., Sinclair D.A. i wsp.: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004; 303: 2011–2015 BrunetA. SweeneyL.B. SturgillJ.F. ChuaK.F. GreerP.L. LinY. TranH. RossS.E. MostoslavskyR. CohenH.Y. HuL.S. ChengH.L. JedrychowskiM.P. GygiS.P. SinclairD.A. i wsp. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science 2004 303 2011 2015 10.1126/science.109463714976264 Search in Google Scholar

Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R.: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell, 2013; 52: 303–313 ChenS. SeilerJ. Santiago-ReicheltM. FelbelK. GrummtI. VoitR. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7 Mol. Cell 2013 52 303 313 10.1016/j.molcel.2013.10.01024207024 Search in Google Scholar

Cheng Y., Ren X., Gowda A.S., Shan Y., Zhang L., Yuan Y.S., Patel R., Wu H., Huber-Keener K., Yang J.W., Liu D., Spratt T.E., Yang J.M.: Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis., 2013; 4: e731 ChengY. RenX. GowdaA.S. ShanY. ZhangL. YuanY.S. PatelR. WuH. Huber-KeenerK. YangJ.W. LiuD. SprattT.E. YangJ.M. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress Cell Death Dis. 2013 4 e731 10.1038/cddis.2013.254373042523868064 Search in Google Scholar

Christovam A.C., Theodoro V., Mendonça F.A., Esquisatto M.A., dos Santos G.M., do Amaral M.E.: Activators of SIRT1 in wound repair: An animal model study. Arch Dermatol Res., 2019; 311: 193–201 ChristovamA.C. TheodoroV. MendonçaF.A. EsquisattoM.A. dos SantosG.M. do AmaralM.E. Activators of SIRT1 in wound repair: An animal model study Arch Dermatol Res. 2019 311 193 201 10.1007/s00403-019-01901-430783767 Search in Google Scholar

Cimen H., Han M.J., Yang Y., Tong Q., Koc H., Koc E.C.: Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry., 2010; 49: 304–311 CimenH. HanM.J. YangY. TongQ. KocH. KocE.C. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria Biochemistry. 2010 49 304 311 10.1021/bi901627u282616720000467 Search in Google Scholar

Dominy J.E. Jr, Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J., Camporez J.P., Ruan H.B., Feldman J., Pierce K., Mostoslavsky R., Denu J.M., Clish C.B., Yang X., Shulman G.I., Gygi S.P. i wsp.: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell, 2012; 48: 900–913 DominyJ.E.Jr. LeeY. JedrychowskiM.P. ChimH. JurczakM.J. CamporezJ.P. RuanH.B. FeldmanJ. PierceK. MostoslavskyR. DenuJ.M. ClishC.B. YangX. ShulmanG.I. GygiS.P. i wsp. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis Mol. Cell 2012 48 900 913 10.1016/j.molcel.2012.09.030353490523142079 Search in Google Scholar

Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A.: Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003; 23: 3173–3185 DrydenS.C. NahhasF.A. NowakJ.E. GoustinA.S. TainskyM.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle Mol. Cell. Biol. 2003 23 3173 3185 10.1128/MCB.23.9.3173-3185.200315319712697818 Search in Google Scholar

Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim, J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J. i wsp.: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011; 334: 806–809 DuJ. ZhouY. SuX. YuJ.J. KhanS. JiangH. KimJ. WooJ. KimJ.H. ChoiB.H. HeB. ChenW. ZhangS. CerioneR.A. AuwerxJ. i wsp. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase Science 2011 334 806 809 10.1126/science.1207861321731322076378 Search in Google Scholar

Eckschlager T., Plch J., Stiborova M., Hrabeta J.: Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017; 18: 1414 EckschlagerT. PlchJ. StiborovaM. HrabetaJ. Histone deacetylase inhibitors as anticancer drugs Int. J. Mol. Sci. 2017 18 1414 10.3390/ijms18071414553590628671573 Search in Google Scholar

Espenshade P.J.: SREBPs: Sterol-regulated transcription factors. J. Cell Sci., 2006; 119: 973–976 EspenshadeP.J. SREBPs: Sterol-regulated transcription factors J. Cell Sci. 2006 119 973 976 10.1242/jcs.0286616525117 Search in Google Scholar

Fataftah N., Mohr C., Hajirezaei M.R., von Wirén N., Humbeck K.: Changes in nitrogen availability lead to a reprogramming of pyruvate metabolism. BMC Plant Biol., 2018; 18: 77 FataftahN. MohrC. HajirezaeiM.R. von WirénN. HumbeckK. Changes in nitrogen availability lead to a reprogramming of pyruvate metabolism BMC Plant Biol. 2018 18 77 10.1186/s12870-018-1301-x593597229728053 Search in Google Scholar

Feldman J.L., Dittenhafer-Reed K.E., Denu J.M.: Sirtuin catalysis and regulation. J. Biol. Chem., 2012; 287: 42419–42427 FeldmanJ.L. Dittenhafer-ReedK.E. DenuJ.M. Sirtuin catalysis and regulation J. Biol. Chem. 2012 287 42419 42427 10.1074/jbc.R112.378877352224223086947 Search in Google Scholar

Finley L.W., Haas W., Desquiret-Dumas V., Wallace D.C., Procaccio V., Gygi S.P., Haigis M.C.: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One, 2011; 6: e23295 FinleyL.W. HaasW. Desquiret-DumasV. WallaceD.C. ProcaccioV. GygiS.P. HaigisM.C. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity PLoS One 2011 6 e23295 10.1371/journal.pone.0023295315734521858060 Search in Google Scholar

Flick F., Lüscher B.: Regulation of sirtuin function by posttranslational modifications. Front. Pharmacol., 2012; 3: 29 FlickF. LüscherB. Regulation of sirtuin function by posttranslational modifications Front. Pharmacol. 2012 3 29 10.3389/fphar.2012.00029328939122403547 Search in Google Scholar

Frye R.A.: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun., 2000; 273: 793–798 FryeR.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins Biochem. Biophys. Res. Commun. 2000 273 793 798 10.1006/bbrc.2000.300010873683 Search in Google Scholar

Gao D., Wang H., Xu Y., Zheng D., Zhang Q., Li W.: Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats. Int. Urol. Nephrol., 2019; 51: 351–358 GaoD. WangH. XuY. ZhengD. ZhangQ. LiW. Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats Int. Urol. Nephrol. 2019 51 351 358 10.1007/s11255-018-2027-230456546 Search in Google Scholar

GeneCards.: https://www.genecards.org (15.06.2020) GeneCards https://www.genecards.org (15.06.2020) Search in Google Scholar

Greiss S., Gartner A.: Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells, 2009; 28: 407–415 GreissS. GartnerA. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation Mol. Cells 2009 28 407 415 10.1007/s10059-009-0169-x371069919936627 Search in Google Scholar

Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., Christodoulou D.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W., Guarente L.: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell., 2006; 126: 941–954 HaigisM.C. MostoslavskyR. HaigisK.M. FahieK. ChristodoulouD.C. MurphyA.J. ValenzuelaD.M. YancopoulosG.D. KarowM. BlanderG. WolbergerC. ProllaT.A. WeindruchR. AltF.W. GuarenteL. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells Cell. 2006 126 941 954 10.1016/j.cell.2006.06.05716959573 Search in Google Scholar

Hallows W.C., Yu W., Denu J.M.: Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem., 2012; 287: 3850–3858 HallowsW.C. YuW. DenuJ.M. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation J. Biol. Chem. 2012 287 3850 3858 10.1074/jbc.M111.317404328171522157007 Search in Google Scholar

Hikosaka K., Yaku K., Okabe K., Nakagawa T.: Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr. Neurosci., 2019; DOI: 10.1080/1028415X.2019.1637504 HikosakaK. YakuK. OkabeK. NakagawaT. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases Nutr. Neurosci. 2019 10.1080/1028415X.2019.1637504 31280708 Open DOISearch in Google Scholar

Horton J.D., Goldstein J.L., Brown M.S.: SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 2002; 109: 1125–1131 HortonJ.D. GoldsteinJ.L. BrownM.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver J. Clin. Invest. 2002 109 1125 1131 10.1172/JCI0215593 Search in Google Scholar

Houtkooper R.H., Pirinen E., Auwerx J:. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012; 13: 225–238 HoutkooperR.H. PirinenE. AuwerxJ. Sirtuins as regulators of metabolism and healthspan Nat. Rev. Mol. Cell Biol. 2012 13 225 238 10.1038/nrm3293487280522395773 Search in Google Scholar

Hubbi M.E., Hu H., Kshitiz, Gilkes D.M., Semenza G.L.: Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem., 2013; 288: 20768–20775 HubbiM.E. HuH. Kshitiz GilkesD.M. SemenzaG.L. Sirtuin-7 inhibits the activity of hypoxia-inducible factors J. Biol. Chem. 2013 288 20768 20775 10.1074/jbc.M113.476903377434823750001 Search in Google Scholar

Jacobs K.M., Pennington J.D., Bisht K.S., Aykin-Burns N., Kim H.S., Mishra M., Sun L., Nguyen P., Ahn B.H., Leclerc J., Deng C.X., Spitz D.R., Gius D.: SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci., 2008; 4: 291–299 JacobsK.M. PenningtonJ.D. BishtK.S. Aykin-BurnsN. KimH.S. MishraM. SunL. NguyenP. AhnB.H. LeclercJ. DengC.X. SpitzD.R. GiusD. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression Int. J. Biol. Sci. 2008 4 291 299 10.7150/ijbs.4.291253279418781224 Search in Google Scholar

Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H., Park G.H., Lee K.H.: SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med., 2007; 39: 8–13 JeongJ. JuhnK. LeeH. KimS.H. MinB.H. LeeK.M. ChoM.H. ParkG.H. LeeK.H. SIRT1 promotes DNA repair activity and deacetylation of Ku70 Exp. Mol. Med. 2007 39 8 13 10.1038/emm.2007.217334224 Search in Google Scholar

Jęśko H., Strosznajder R.P.: Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol., 2016; 54: 212–233 JęśkoH. StrosznajderR.P. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases Folia Neuropathol. 2016 54 212 233 10.5114/fn.2016.6253127764514 Search in Google Scholar

Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., Guan K.L., Zhao S.: Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell., 2011; 43: 33–44 JiangW. WangS. XiaoM. LinY. ZhouL. LeiQ. XiongY. GuanK.L. ZhaoS. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase Mol Cell. 2011 43 33 44 10.1016/j.molcel.2011.04.028396230921726808 Search in Google Scholar

Jing E., Gesta S., Kahn C.R.: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab., 2007; 6: 105–114 JingE. GestaS. KahnC.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation Cell Metab. 2007 6 105 114 10.1016/j.cmet.2007.07.003208363517681146 Search in Google Scholar

Jing H., Lin H.: Sirtuins in epigenetic regulation. Chem Rev., 2015; 115: 2350–2375 JingH. LinH. Sirtuins in epigenetic regulation Chem Rev. 2015 115 2350 2375 10.1021/cr500457h461030125804908 Search in Google Scholar

Johnson C.A.: Chromatin modification and disease. J. Med. Genet., 2000; 37: 905–915 JohnsonC.A. Chromatin modification and disease J. Med. Genet. 2000 37 905 915 10.1136/jmg.37.12.905173449911106353 Search in Google Scholar

Kahl G.: The dictionary of genomics, transcriptomics and proteomics. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2015; Volume 1 A-D: 2156 KahlG. The dictionary of genomics, transcriptomics and proteomics Wiley-VCH Verlag GmbH&Co. KGaA Weinheim 2015 Volume 1 A-D: 2156 10.1002/9783527678679 Search in Google Scholar

Kaidi A., Weinert B.T., Choudhary C., Jackson S.P.: Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science, 2010; 329: 1348–1353 KaidiA. WeinertB.T. ChoudharyC. JacksonS.P. Human SIRT6 promotes DNA end resection through CtIP deacetylation Science 2010 329 1348 1353 10.1126/science.1192049327683920829486 Search in Google Scholar

Karim M.F., Yoshizawa T., Sobuz S.U., Sato Y., Yamagata K.: Sirtuin 7-dependent deacetylation of DDB1 regulates the expression of nuclear receptor TR4. Biochem. Biophys. Res. Commun., 2017; 490: 423–428 KarimM.F. YoshizawaT. SobuzS.U. SatoY. YamagataK. Sirtuin 7-dependent deacetylation of DDB1 regulates the expression of nuclear receptor TR4 Biochem. Biophys. Res. Commun. 2017 490 423 428 10.1016/j.bbrc.2017.06.05728623141 Search in Google Scholar

Kouzarides T.: Chromatin modifications and their function. Cell., 2007; 128: 693–705 KouzaridesT. Chromatin modifications and their function Cell. 2007 128 693 705 10.1016/j.cell.2007.02.00517320507 Search in Google Scholar

Kozako T., Suzuki T., Yoshimitsu M., Arima N., Honda S., Soeda S.: Anticancer agents targeted to sirtuins. Molecules, 2014; 19: 20295–20313 KozakoT. SuzukiT. YoshimitsuM. ArimaN. HondaS. SoedaS. Anticancer agents targeted to sirtuins Molecules 2014 19 20295 20313 10.3390/molecules191220295627085025486244 Search in Google Scholar

Kupis W., Pałyga J., Tomal E., Niewiadomska E.: The role of sirtuins in cellular homeostasis. J. Physiol. Biochem., 2016; 72: 371–380 KupisW. PałygaJ. TomalE. NiewiadomskaE. The role of sirtuins in cellular homeostasis J. Physiol. Biochem. 2016 72 371 380 10.1007/s13105-016-0492-6499204327154583 Search in Google Scholar

Kyrylenko S., Kyrylenko O., Suuronen T., Salminen A.: Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell. Mol. Life Sci., 2003; 60: 1990–1997 KyrylenkoS. KyrylenkoO. SuuronenT. SalminenA. Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases Cell. Mol. Life Sci. 2003 60 1990 1997 10.1007/s00018-003-3090-z14523559 Search in Google Scholar

Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., Pillus L., Sternglanz R.: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA, 2000; 97: 5807–5811 LandryJ. SuttonA. TafrovS.T. HellerR.C. StebbinsJ. PillusL. SternglanzR. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases Proc. Natl. Acad. Sci. USA 2000 97 5807 5811 10.1073/pnas.1101482971851510811920 Search in Google Scholar

Langley E., Pearson M., Faretta M., Bauer U.M., Frye RA., Minucci S., Pelicci P.G., Kouzarides T.: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J., 2002; 21: 2383–2396 LangleyE. PearsonM. FarettaM. BauerU.M. FryeRA. MinucciS. PelicciP.G. KouzaridesT. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence EMBO J. 2002 21 2383 2396 10.1093/emboj/21.10.238312601012006491 Search in Google Scholar

Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., Schug T.T., Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol., 2013; 33: 4552–4561 LaurentG. de BoerV.C. FinleyL.W. SweeneyM. LuH. SchugT.T. CenY. JeongS.M. LiX. SauveA.A. HaigisM.C. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation Mol. Cell. Biol. 2013 33 4552 4561 10.1128/MCB.00087-13383817824043310 Search in Google Scholar

Laurent G., German N.J., Saha A.K., de Boer V.C., Davies M., Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B., Lovitch S.B., Sharpe A.H., Kurland I.J., Steegborn C., Gygi S.P. i wsp: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl-CoA decarboxylase. Mol. Cell., 2013; 50: 686–698 LaurentG. GermanN.J. SahaA.K. de BoerV.C. DaviesM. KovesT.R. DephoureN. FischerF. BoancaG. VaitheesvaranB. LovitchS.B. SharpeA.H. KurlandI.J. SteegbornC. GygiS.P. i wsp SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl-CoA decarboxylase Mol. Cell. 2013 50 686 698 10.1016/j.molcel.2013.05.012372106823746352 Search in Google Scholar

Li L., Shi L., Yang S., Yan R., Zhang D., Yang J., He L., Li W., Yi X., Sun L., Liang J., Cheng Z., Shi L., Shang Y., Yu W.: SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun., 2016; 7: 12235 LiL. ShiL. YangS. YanR. ZhangD. YangJ. HeL. LiW. YiX. SunL. LiangJ. ChengZ. ShiL. ShangY. YuW. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability Nat. Commun. 2016 7 12235 10.1038/ncomms12235496179427436229 Search in Google Scholar

Li W., Zhang B., Tang J., Cao Q., Wu Y., Wu C., Guo J., Ling E.A., Liang F.: Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci., 2007; 27: 2606–2616 LiW. ZhangB. TangJ. CaoQ. WuY. WuC. GuoJ. LingE.A. LiangF. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin J. Neurosci. 2007 27 2606 2616 10.1523/JNEUROSCI.4181-06.2007667249017344398 Search in Google Scholar

Lipska K., Filip A.A., Gumieniczek A.: Postępy w badaniach nad inhibitorami deacetylaz histonów jako lekami przeciwnowotworowymi. Postępy Hig. Med. Dośw., 2018; 72: 1018–1031 LipskaK. FilipA.A. GumieniczekA. Postępy w badaniach nad inhibitorami deacetylaz histonów jako lekami przeciwnowotworowymi Postępy Hig. Med. Dośw. 2018 72 1018 1031 10.5604/01.3001.0012.7749 Search in Google Scholar

Liszt G., Ford E., Kurtev M., Guarente L.: Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem., 2005; 280: 21313–21320 LisztG. FordE. KurtevM. GuarenteL. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase J. Biol. Chem. 2005 280 21313 21320 10.1074/jbc.M41329620015795229 Search in Google Scholar

Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M. i wsp.: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol., 2007; 27: 8807–8814 LombardD.B. AltF.W. ChengH.L. BunkenborgJ. StreeperR.S. MostoslavskyR. KimJ. YancopoulosG. ValenzuelaD. MurphyA. YangY. ChenY. HirscheyM.D. BronsonR.T. HaigisM. i wsp. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation Mol. Cell. Biol. 2007 27 8807 8814 10.1128/MCB.01636-07 Search in Google Scholar

Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W.: Negative control of p53 by Sir2α promotes cell survival under stress. Cell., 2001; 107: 137–148 LuoJ. NikolaevA.Y. ImaiS. ChenD. SuF. ShilohA. GuarenteL. GuW. Negative control of p53 by Sir2α promotes cell survival under stress Cell. 2001 107 137 148 10.1016/S0092-8674(01)00524-4 Search in Google Scholar

Luo K., Huang W., Tang S.: Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction. Onco Targets Ther., 2018; 11: 7559–7567 LuoK. HuangW. TangS. Sirt3 enhances glioma cell viability by stabilizing Ku70-BAX interaction Onco Targets Ther. 2018 11 7559 7567 10.2147/OTT.S172672621458430464504 Search in Google Scholar

Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V.: SIRT6 promotes DNA repair under stress by activating PARP1. Science, 2011; 332: 1443–1446 MaoZ. HineC. TianX. Van MeterM. AuM. VaidyaA. SeluanovA. GorbunovaV. SIRT6 promotes DNA repair under stress by activating PARP1 Science 2011 332 1443 1446 10.1126/science.1202723547244721680843 Search in Google Scholar

Mathias R.A., Greco T.M., Cristea I.M.: Identification of sirtuin4 (SIRT4) protein interactions: Uncovering candidate acyl-modified mitochondrial substrates and enzymatic regulators. Methods Mol. Biol., 2016; 1436: 213–239 MathiasR.A. GrecoT.M. CristeaI.M. Identification of sirtuin4 (SIRT4) protein interactions: Uncovering candidate acyl-modified mitochondrial substrates and enzymatic regulators Methods Mol. Biol. 2016 1436 213 239 10.1007/978-1-4939-3667-0_15491957327246218 Search in Google Scholar

Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., Chakrabarti R., Rowland E.A., Kang Y., Shenk T., Cristea I.M.: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell., 2014; 159: 1615–1625 MathiasR.A. GrecoT.M. ObersteinA. BudayevaH.G. ChakrabartiR. RowlandE.A. KangY. ShenkT. CristeaI.M. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity Cell. 2014 159 1615 1625 10.1016/j.cell.2014.11.046434412125525879 Search in Google Scholar

Matsushita N., Yonashiro R., Ogata Y., Sugiura A., Nagashima S., Fukuda T., Inatome R., Yanagi S.: Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells, 2011; 16: 190–202 MatsushitaN. YonashiroR. OgataY. SugiuraA. NagashimaS. FukudaT. InatomeR. YanagiS. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms Genes Cells 2011 16 190 202 10.1111/j.1365-2443.2010.01475.x21143562 Search in Google Scholar

Maxwell P.H., Pugh C.W., Ratcliffe P.J.: The pVHL-hIF-1 system. A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol., 2001; 502: 365–376 MaxwellP.H. PughC.W. RatcliffeP.J. The pVHL-hIF-1 system. A key mediator of oxygen homeostasis Adv. Exp. Med. Biol. 2001 502 365 376 10.1007/978-1-4757-3401-0_24 Search in Google Scholar

McCord R.A., Michishita E., Hong T., Berber E., Boxer L.D., Kusumoto R., Guan S., Shi X., Gozani O., Burlingame A.L., Bohr V.A., Chua K.F.: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging, 2009; 1: 109–121 McCordR.A. MichishitaE. HongT. BerberE. BoxerL.D. KusumotoR. GuanS. ShiX. GozaniO. BurlingameA.L. BohrV.A. ChuaK.F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair Aging 2009 1 109 121 10.18632/aging.100011281576820157594 Search in Google Scholar

Mei Z., Zhang X., Yi J., Huang J., He J., Tao Y.: Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016; 35: 182 MeiZ. ZhangX. YiJ. HuangJ. HeJ. TaoY. Sirtuins in metabolism, DNA repair and cancer J. Exp. Clin. Cancer Res. 2016 35 182 10.1186/s13046-016-0461-5513722227916001 Search in Google Scholar

Meijer A.J., Lamers W.H., Chamuleau R.A.: Nitrogen metabolism and ornithine cycle function. Physiol Rev., 1990; 70: 701–748 MeijerA.J. LamersW.H. ChamuleauR.A. Nitrogen metabolism and ornithine cycle function Physiol Rev. 1990 70 701 748 10.1152/physrev.1990.70.3.7012194222 Search in Google Scholar

Michan S., Sinclair D.: Sirtuins in mammals: Insights into their biological function. Biochem. J., 2007; 404: 1–13 MichanS. SinclairD. Sirtuins in mammals: Insights into their biological function Biochem. J. 2007 404 1 13 10.1042/BJ20070140275345317447894 Search in Google Scholar

Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H., Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F.: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 2008; 452: 492–496 MichishitaE. McCordR.A. BerberE. KioiM. Padilla-NashH. DamianM. CheungP. KusumotoR. KawaharaT.L. BarrettJ.C. ChangH.Y. BohrV.A. RiedT. GozaniO. ChuaK.F. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin Nature 2008 452 492 496 10.1038/nature06736 Search in Google Scholar

Muth V., Nadaud S., Grummt I., Voit R.: Acetylation of TAFI68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J., 2001; 20: 1353–1362 MuthV. NadaudS. GrummtI. VoitR. Acetylation of TAFI68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription EMBO J. 2001 20 1353 1362 10.1093/emboj/20.6.1353 Search in Google Scholar

Nakae J., Oki M., Cao Y.: The FoxO transcription factors and metabolic regulation. FEBS Lett., 2008; 582: 54–67 NakaeJ. OkiM. CaoY. The FoxO transcription factors and metabolic regulation FEBS Lett. 2008 582 54 67 10.1016/j.febslet.2007.11.025 Search in Google Scholar

Nakagawa T., Lomb D.J., Haigis M.C., Guarente L.: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009; 137: 560–570 NakagawaT. LombD.J. HaigisM.C. GuarenteL. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle Cell 2009 137 560 570 10.1016/j.cell.2009.02.026 Search in Google Scholar

Nakamura Y., Ogura M., Ogura K., Tanaka D., Inagaki N.: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett., 2012; 586: 4076–4081 NakamuraY. OguraM. OguraK. TanakaD. InagakiN. SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice FEBS Lett. 2012 586 4076 4081 10.1016/j.febslet.2012.10.009 Search in Google Scholar

Nishida Y., Rardin M.J., Carrico C., He W., Sahu A.K., Gut P., Najjar R., Fitch M., Hellerstein M., Gibson B.W., Verdin E.: SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell., 2015; 59: 321–332 NishidaY. RardinM.J. CarricoC. HeW. SahuA.K. GutP. NajjarR. FitchM. HellersteinM. GibsonB.W. VerdinE. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target Mol. Cell. 2015 59 321 332 10.1016/j.molcel.2015.05.022 Search in Google Scholar

North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell, 2003; 11: 437–444 NorthB.J. MarshallB.L. BorraM.T. DenuJ.M. VerdinE. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase Mol. Cell 2003 11 437 444 10.1016/S1097-2765(03)00038-8 Search in Google Scholar

Obsil T., Obsilova V.: Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene, 2008; 27: 2263–2275 ObsilT. ObsilovaV. Structure/function relationships underlying regulation of FOXO transcription factors Oncogene 2008 27 2263 2275 10.1038/onc.2008.2018391969 Search in Google Scholar

Osborne T.F., Espenshade P.J.: Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it’s been. Genes Dev., 2009; 23: 2578–2591 OsborneT.F. EspenshadeP.J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it’s been Genes Dev. 2009 23 2578 2591 10.1101/gad.1854309277976119933148 Search in Google Scholar

Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M., Skinner M.E., Lombard D.B., Zhao Y.: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell, 2013; 50: 919–930 ParkJ. ChenY. TishkoffD.X. PengC. TanM. DaiL. XieZ. ZhangY. ZwaansB.M. SkinnerM.E. LombardD.B. ZhaoY. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways Mol. Cell 2013 50 919 930 10.1016/j.molcel.2013.06.001376997123806337 Search in Google Scholar

Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., Zhang Y., He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D., He T.C. i wsp.: The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell Proteomics, 2011; 10: M111.012658 PengC. LuZ. XieZ. ChengZ. ChenY. TanM. LuoH. ZhangY. HeW. YangK. ZwaansB.M. TishkoffD. HoL. LombardD. HeT.C. i wsp. The first identification of lysine malonylation substrates and its regulatory enzyme Mol. Cell Proteomics 2011 10 M111.012658 10.1074/mcp.M111.012658323709021908771 Search in Google Scholar

Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado de Oliviera R., Leid M., McBurney M.W., Guarente L.: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature, 2004; 429: 771–776 PicardF. KurtevM. ChungN. Topark-NgarmA. SenawongT. Machado de OlivieraR. LeidM. McBurneyM.W. GuarenteL. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ Nature 2004 429 771 776 10.1038/nature02583282024715175761 Search in Google Scholar

Polletta L., Vernucci E., Carnevale I., Arcangeli T., Rotili D., Palmerio S., Steegborn C., Nowak T., Schutkowski M., Pellegrini L., Sansone L., Villanova L., Runci A., Pucci B., Morgante E. i wsp.: SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015; 11: 253–270 PollettaL. VernucciE. CarnevaleI. ArcangeliT. RotiliD. PalmerioS. SteegbornC. NowakT. SchutkowskiM. PellegriniL. SansoneL. VillanovaL. RunciA. PucciB. MorganteE. i wsp. SIRT5 regulation of ammonia-induced autophagy and mitophagy Autophagy 2015 11 253 270 10.1080/15548627.2015.1009778450272625700560 Search in Google Scholar

Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K.: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem., 2010; 285: 33959–33970 PonugotiB. KimD.H. XiaoZ. SmithZ. MiaoJ. ZangM. WuS.Y. ChiangC.M. VeenstraT.D. KemperJ.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism J. Biol. Chem. 2010 285 33959 33970 10.1074/jbc.M110.122978296249620817729 Search in Google Scholar

Ramsey K.M., Mills K.F., Satoh A., Imai S.I.: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 2008; 7: 78–88 RamseyK.M. MillsK.F. SatohA. ImaiS.I. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice Aging Cell 2008 7 78 88 10.1111/j.1474-9726.2007.00355.x223867718005249 Search in Google Scholar

Rangarajan P., Karthikeyan A., Lu J., Ling E.A., Dheen S.T.: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience, 2015; 311: 398–414 RangarajanP. KarthikeyanA. LuJ. LingE.A. DheenS.T. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia Neuroscience 2015 311 398 414 10.1016/j.neuroscience.2015.10.04826523980 Search in Google Scholar

Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., Danielson S.R., Guo A., Gut P., Sahu A.K,. Li B., Uppala R., Fitch M., Riiff T., Zhu L., Zhou J. i wsp.: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab., 2013; 18: 920–933 RardinM.J. HeW. NishidaY. NewmanJ.C. CarricoC. DanielsonS.R. GuoA. GutP. SahuA.K. LiB. UppalaR. FitchM. RiiffT. ZhuL. ZhouJ. i wsp. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks Cell Metab. 2013 18 920 933 10.1016/j.cmet.2013.11.013410515224315375 Search in Google Scholar

Rodgers J.T., Lerin C., Gerhart-Hines Z., Puigserver P.: Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett., 2008; 582: 46–53 RodgersJ.T. LerinC. Gerhart-HinesZ. PuigserverP. Metabolic adaptations through the PGC-1α and SIRT1 pathways FEBS Lett. 2008 582 46 53 10.1016/j.febslet.2007.11.034227580618036349 Search in Google Scholar

Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P.: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005; 434: 113–118 RodgersJ.T. LerinC. HaasW. GygiS.P. SpiegelmanB.M. PuigserverP. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 Nature 2005 434 113 118 10.1038/nature0335415744310 Search in Google Scholar

Rodgers J.T., Puigserver P.: Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. USA, 2007; 104: 12861–12866 RodgersJ.T. PuigserverP. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1 Proc. Natl. Acad. Sci. USA 2007 104 12861 12866 10.1073/pnas.0702509104193755717646659 Search in Google Scholar

Rorbach-Dolata A., Kubis A., Piwowar A.: Modyfikacje epigenetyczne – ważny mechanizm w zaburzeniach cukrzycy. Postępy Hig. Med. Dośw., 2017; 71: 960–974 Rorbach-DolataA. KubisA. PiwowarA. Modyfikacje epigenetyczne – ważny mechanizm w zaburzeniach cukrzycy Postępy Hig. Med. Dośw. 2017 71 960 974 Search in Google Scholar

Ryu D., Jo Y.S., Lo Sasso G., Stein S., Zhang H., Perino A., Lee J.U., Zeviani M., Romand R., Hottiger M.O., Schoonjans K., Auwerx J.: A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell. Metab., 2014; 20: 856–869 RyuD. JoY.S. Lo SassoG. SteinS. ZhangH. PerinoA. LeeJ.U. ZevianiM. RomandR. HottigerM.O. SchoonjansK. AuwerxJ. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function Cell. Metab. 2014 20 856 869 10.1016/j.cmet.2014.08.00125200183 Search in Google Scholar

Sanders B.D., Jackson B., Marmorstein R.: Structural basis for sirtuin function: What we know and what we don’t. Biochim. Biophys. Acta, 2010; 1804: 1604–1616 SandersB.D. JacksonB. MarmorsteinR. Structural basis for sirtuin function: What we know and what we don’t Biochim. Biophys. Acta 2010 1804 1604 1616 10.1016/j.bbapap.2009.09.009288616619766737 Search in Google Scholar

Scher M.B., Vaquero A., Reinberg D.: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev., 2007; 21: 920–928 ScherM.B. VaqueroA. ReinbergD. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress Genes Dev. 2007 21 920 928 10.1101/gad.1527307184771017437997 Search in Google Scholar

Schiedel M., Robaa D., Rumpf T., Sippl W., Jung M.: The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. Med. Res. Rev., 2017; 37: 147–200 SchiedelM. RobaaD. RumpfT. SipplW. JungM. The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets Med. Res. Rev. 2017 37 147 200 10.1002/med.2143628094444 Search in Google Scholar

Schwer B., North B.J., Frye R.A., Ott M., Verdin E.: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell. Biol., 2002; 158: 647–657 SchwerB. NorthB.J. FryeR.A. OttM. VerdinE. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase J. Cell. Biol. 2002 158 647 657 10.1083/jcb.200205057217400912186850 Search in Google Scholar

Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E.: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 2005; 7: 77–85 SelakM.A. ArmourS.M. MacKenzieE.D. BoulahbelH. WatsonD.G. MansfieldK.D. PanY. SimonM.C. ThompsonC.B. GottliebE. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase Cancer Cell 2005 7 77 85 10.1016/j.ccr.2004.11.02215652751 Search in Google Scholar

Semenza G.L.: Regulation of oxygen homeostasis by hypoxiainducible factor 1. Physiology, 2009; 24: 97–106 SemenzaG.L. Regulation of oxygen homeostasis by hypoxiainducible factor 1 Physiology 2009 24 97 106 10.1152/physiol.00045.200819364912 Search in Google Scholar

Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., Qiu X., Nabavi N., Mohrin M., Wojnoonski K. Li P., Cheng H.L., Murphy A.J., Valenzuela D.M., Luo H. i wsp.: SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep., 2013; 5: 654–665 ShinJ. HeM. LiuY. ParedesS. VillanovaL. BrownK. QiuX. NabaviN. MohrinM. WojnoonskiK. LiP. ChengH.L. MurphyA.J. ValenzuelaD.M. LuoH. i wsp. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease Cell Rep. 2013 5 654 665 10.1016/j.celrep.2013.10.007388824024210820 Search in Google Scholar

Siedlecka K., Bogusławski W.: Sirtuiny – enzymy długowieczności? Gerontol. Pol., 2005; 13: 147–152 SiedleckaK. BogusławskiW. Sirtuiny – enzymy długowieczności? Gerontol. Pol. 2005 13 147 152 Search in Google Scholar

Snyder C.A., Goodson M.L., Schroeder A.C., Privalsky M.L.: Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling. Mol. Cell. Endocrinol., 2015; 413: 228–235 SnyderC.A. GoodsonM.L. SchroederA.C. PrivalskyM.L. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling Mol. Cell. Endocrinol. 2015 413 228 235 10.1016/j.mce.2015.06.036455626926166430 Search in Google Scholar

Sundaresan N.R., Samant S.A., Pillai V.B., Rajamohan S.B., Gupta M.P.: SIRT3 is a stress responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol., 2008; 28: 6384–6401 SundaresanN.R. SamantS.A. PillaiV.B. RajamohanS.B. GuptaM.P. SIRT3 is a stress responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 Mol. Cell. Biol. 2008 28 6384 6401 10.1128/MCB.00426-08257743418710944 Search in Google Scholar

Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F., Madsen A.S., Schmiesing J. i wsp.: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell. Metab., 2014; 19: 605–617 TanM. PengC. AndersonK.A. ChhoyP. XieZ. DaiL. ParkJ. ChenY. HuangH. ZhangY. RoJ. WagnerG.R. GreenM.F. MadsenA.S. SchmiesingJ. i wsp. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 Cell. Metab. 2014 19 605 617 10.1016/j.cmet.2014.03.014 Search in Google Scholar

Tavares C.D., Sharabi K., Dominy J.E., Lee Y., Isasa M., Orozco J.M., Jedrychowski M.P., Kamenecka T.M., Griffin P.R., Gygi S.P., Puigserver P.: The methionine transamination pathway controls hepatic glucose metabolism through regulation of the GCN5 acetyltransferase and the PGC-1α transcriptional coactivator. J. Biol. Chem., 2016; 291: 10635–10645 TavaresC.D. SharabiK. DominyJ.E. LeeY. IsasaM. OrozcoJ.M. JedrychowskiM.P. KameneckaT.M. GriffinP.R. GygiS.P. PuigserverP. The methionine transamination pathway controls hepatic glucose metabolism through regulation of the GCN5 acetyltransferase and the PGC-1α transcriptional coactivator J. Biol. Chem. 2016 291 10635 10645 10.1074/jbc.M115.706200 Search in Google Scholar

Tennen R.I., Bua D.J., Wright W.E., Chua K.F.: SIRT6 is required for maintenance of telomere position effect in human cells. Nat. Commun., 2011; 2: 433 TennenR.I. BuaD.J. WrightW.E. ChuaK.F. SIRT6 is required for maintenance of telomere position effect in human cells Nat. Commun. 2011 2 433 10.1038/ncomms1443 Search in Google Scholar

Tsai Y.C., Greco T.M., Cristea I.M.: Sirtuin7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics, 2014; 13: 73–83 TsaiY.C. GrecoT.M. CristeaI.M. Sirtuin7 plays a role in ribosome biogenesis and protein synthesis Mol. Cell. Proteomics 2014 13 73 83 10.1074/mcp.M113.031377 Search in Google Scholar

van der Horst A., Tertoolen L.G., de Vries-Smits L.M., Frye R.A., Medema R.H., Burgering B.M.: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem., 2004; 279: 28873–28879 van der HorstA. TertoolenL.G. de Vries-SmitsL.M. FryeR.A. MedemaR.H. BurgeringB.M. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1) J. Biol. Chem. 2004 279 28873 28879 10.1074/jbc.M401138200 Search in Google Scholar

Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D.: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell., 2004; 16: 93–105 VaqueroA. ScherM. LeeD. Erdjument-BromageH. TempstP. ReinbergD. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin Mol. Cell. 2004 16 93 105 10.1016/j.molcel.2004.08.031 Search in Google Scholar

Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., Alt F.W., Serrano L., Sternglanz R., Reinberg D.: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev., 2006; 20: 1256–1261 VaqueroA. ScherM.B. LeeD.H. SuttonA. ChengH.L. AltF.W. SerranoL. SternglanzR. ReinbergD. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis Genes Dev. 2006 20 1256 1261 10.1101/gad.1412706 Search in Google Scholar

Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A.: hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001; 107: 149–159 VaziriH. DessainS.K. Ng EatonE. ImaiS.I. FryeR.A. PanditaT.K. GuarenteL. WeinbergR.A. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase Cell 2001 107 149 159 10.1016/S0092-8674(01)00527-X Search in Google Scholar

Walker A.K., Yang F., Jiang K., Ji J.Y., Watts J.L., Purushotham A,. Boss O., Hirsch M.L., Ribich S., Smith J.J., Israelian K., Westphal C.H., Rodgers J.T., Shioda T., Elson S.L. i wsp.: Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev., 2010; 24: 1403–1417 WalkerA.K. YangF. JiangK. JiJ.Y. WattsJ.L. PurushothamA. BossO. HirschM.L. RibichS. SmithJ.J. IsraelianK. WestphalC.H. RodgersJ.T. ShiodaT. ElsonS.L. i wsp. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP Genes Dev. 2010 24 1403 1417 10.1101/gad.1901210289519920595232 Search in Google Scholar

Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene, 2012; 31: 1546–1557 WangF. ChanC.H. ChenK. GuanX. LinH.K. TongQ. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation Oncogene 2012 31 1546 1557 10.1038/onc.2011.34721841822 Search in Google Scholar

Wang F., Nguyen M., Qin F.X., Tong Q.: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell, 2007; 6: 505–514 WangF. NguyenM. QinF.X. TongQ. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction Aging Cell 2007 6 505 514 10.1111/j.1474-9726.2007.00304.x17521387 Search in Google Scholar

Wang F., Tong Q.: SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ. Mol. Biol. Cell, 2009; 20: 801–808 WangF. TongQ. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ Mol. Biol. Cell 2009 20 801 808 10.1091/mbc.e08-06-0647263340319037106 Search in Google Scholar

Webb A.E., Brunet A.: FOXO transcription factors: Key regulators of cellular quality control. Trends Biochem. Sci., 2014; 39: 159–169 WebbA.E. BrunetA. FOXO transcription factors: Key regulators of cellular quality control Trends Biochem. Sci. 2014 39 159 169 10.1016/j.tibs.2014.02.003402186724630600 Search in Google Scholar

Wiercińska M., Rosołowska-Huszcz D.: Naturalne i syntetyczne modulatory aktywności sirtuin. Kosmos, 2017; 66: 365–377 WiercińskaM. Rosołowska-HuszczD. Naturalne i syntetyczne modulatory aktywności sirtuin Kosmos 2017 66 365 377 Search in Google Scholar

Yamamoto H., Schoonjans K., Auwerx J.: Sirtuin functions in health and disease. Mol. Endocrinol., 2007; 21: 1745–1755 YamamotoH. SchoonjansK. AuwerxJ. Sirtuin functions in health and disease Mol. Endocrinol. 2007 21 1745 1755 10.1210/me.2007-007917456799 Search in Google Scholar

Yang B., Zwaans B.M., Eckersdorff M., Lombard D.B.: The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle, 2009; 8: 2662–2663 YangB. ZwaansB.M. EckersdorffM. LombardD.B. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability Cell Cycle 2009 8 2662 2663 10.4161/cc.8.16.9329272817119597350 Search in Google Scholar

Yang S.R., Wright J., Bauter M., Seweryniak K., Kode A., Rahman I.: Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: Implications for chronic inflammation and aging. Am. J. Physiol. Lung Cell Mol. Physiol., 2007; 292: L567–L576 YangS.R. WrightJ. BauterM. SeweryniakK. KodeA. RahmanI. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: Implications for chronic inflammation and aging Am. J. Physiol. Lung Cell Mol. Physiol. 2007 292 L567 L576 10.1152/ajplung.00308.200617041012 Search in Google Scholar

Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W.: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004; 23: 2369–2380 YeungF. HobergJ.E. RamseyC.S. KellerM.D. JonesD.R. FryeR.A. MayoM.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase EMBO J. 2004 23 2369 2380 10.1038/sj.emboj.760024442328615152190 Search in Google Scholar

Zhang M., Pan Y., Dorfman R.G., Yin Y., Zhou Q., Huang S., Liu J., Zhao S.: Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2. Sci Rep., 2017; 7: 7 ZhangM. PanY. DorfmanR.G. YinY. ZhouQ. HuangS. LiuJ. ZhaoS. Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2 Sci Rep. 2017 7 7 10.1038/s41598-017-00035-9542834128127057 Search in Google Scholar

Zhang P.Y., Li G., Deng Z.J., Liu L.Y., Chen L., Tang J.Z., Wang Y.Q., Cao S.T., Fang Y.X., Wen F., Xu Y., Chen X., Shi K.Q., Li W.F., Xie C. i wsp.: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res., 2016; 44: 3629–3642 ZhangP.Y. LiG. DengZ.J. LiuL.Y. ChenL. TangJ.Z. WangY.Q. CaoS.T. FangY.X. WenF. XuY. ChenX. ShiK.Q. LiW.F. XieC. i wsp. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents Nucleic Acids Res. 2016 44 3629 3642 10.1093/nar/gkv1504485696626704979 Search in Google Scholar

Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F. i wsp.: Regulation of cellular metabolism by protein lysine acetylation. Science, 2010; 327: 1000–1004 ZhaoS. XuW. JiangW. YuW. LinY. ZhangT. YaoJ. ZhouL. ZengY. LiH. LiY. ShiJ. AnW. HancockS.M. HeF. i wsp. Regulation of cellular metabolism by protein lysine acetylation Science 2010 327 1000 1004 10.1126/science.1179689323267520167786 Search in Google Scholar

Zhao T., Alam H.B., Liu B., Bronson R.T., Nikolian V.C., Wu E., Chong W., Li Y.: Selective inhibition of SIRT2 improves outcomes in a lethal septic model. Curr. Mol. Med., 2015; 15: 634–641 ZhaoT. AlamH.B. LiuB. BronsonR.T. NikolianV.C. WuE. ChongW. LiY. Selective inhibition of SIRT2 improves outcomes in a lethal septic model Curr. Mol. Med. 2015 15 634 641 10.2174/156652401507150903185852482431926299770 Search in Google Scholar

Zhong L., Mostoslavsky R.: SIRT6: A master epigenetic gate-keeper of glucose metabolism. Transcription, 2010; 1: 17–21 ZhongL. MostoslavskyR. SIRT6: A master epigenetic gate-keeper of glucose metabolism Transcription 2010 1 17 21 10.4161/trns.1.1.12143303518221327158 Search in Google Scholar

Zhong L., D’Urso A., Toiber D., Sebastian C., Henry R.E., Vadysirisack D.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., Clish C.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y. i wsp.: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell, 2010; 140: 280–293 ZhongL. D’UrsoA. ToiberD. SebastianC. HenryR.E. VadysirisackD.D. GuimaraesA. MarinelliB. WikstromJ.D. NirT. ClishC.B. VaitheesvaranB. IliopoulosO. KurlandI. DorY. i wsp. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α Cell 2010 140 280 293 10.1016/j.cell.2009.12.041282104520141841 Search in Google Scholar

eISSN:
1732-2693
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology