Otwarty dostęp

Reduction in advanced glycation end products by ACE inhibitor in diabetic cardiomyopathy model


Zacytuj

1. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974; 34:29-34.10.1016/0002-9149(74)90089-7Open DOISearch in Google Scholar

2. Ren J, Davidoff AJ. Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol. 1997; 272:H148-H158.10.1152/ajpheart.1997.272.1.H1489038933Search in Google Scholar

3. Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ Res. 2006; 98:596-605.10.1161/01.RES.0000207406.94146.c216543510Open DOISearch in Google Scholar

4. Bell DS. Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care. 1995; 18:708-14.10.2337/diacare.18.5.7088586013Open DOISearch in Google Scholar

5. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994; 43:676-83.10.2337/diab.43.5.6768168645Open DOISearch in Google Scholar

6. Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor up-regulation contribute to the onset of diabetic nephropathy. J Cell Mol Med. 2009; 13:1751-64.10.1111/j.1582-4934.2008.00547.x282934119602045Open DOISearch in Google Scholar

7. Edelstein D, Brownlee M. Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats. Diabetologia. 1992; 35:96-7.10.1007/BF004008591541387Open DOISearch in Google Scholar

8. Hammes HP, Brownlee M, Edelstein D, Saleck M, Martin S, Federlin K. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia. 1994; 37:32-5.10.1007/BF004287748150227Open DOISearch in Google Scholar

9. Cameron NE, Cotter MA, Dines K, Love A. Effects of aminoguanidine on peripheral nerve function and polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia. 1992; 35:946-50.10.1007/BF004014231451951Open DOISearch in Google Scholar

10. Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, et al. Myocyte death in streptozotocininduced diabetes in rats in angiotensin II- dependent. Lab Invest. 2000; 80:513-27.10.1038/labinvest.378005710780668Open DOISearch in Google Scholar

11. Fukagawa NK, Li M, Liang P, Russell JC, Sobel BE, Absher PM. Aging and high concentrations of glucose potentiate injury to mitochondrial DNA. Free Radical Biol Med. 1999; 27:1437-43.10.1016/S0891-5849(99)00189-6Search in Google Scholar

12. Dunn JA, Patrick JS, Thorpe SR, Baynes JW. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry. 1989; 28:9464-8.10.1021/bi00450a0332514802Open DOISearch in Google Scholar

13. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation. 1999; 99:2934-41.10.1161/01.CIR.99.22.293410359739Open DOISearch in Google Scholar

14. Cooper ME. The role of the renin-angiotensinaldosterone system in diabetes and its vascular complications. Am J Hypertension. 2004; 17:16S-20S; quiz A12-14.10.1016/j.amjhyper.2004.08.00415539106Open DOISearch in Google Scholar

15. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000; 355:253-9.Search in Google Scholar

16. Ruiz-Ortega M, Lorenzo O, Ruperez M, Egido J. ACE inhibitors and AT(1) receptor antagonists-beyond the haemodynamic effect. Nephrol Dial Transplant. 2000; 15:561-5.10.1093/ndt/15.5.56110809789Search in Google Scholar

17. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993; 329:1456-62.10.1056/NEJM1993111132920048413456Search in Google Scholar

18. Nomoto T, Nishina T, Miwa S, Tsuneyoshi H, Maruyama I, Nishimura K, et al. Angiotensinconverting enzyme inhibitor helps prevent late remodeling after left ventricular aneurysm repair in rats. Circulation. 2002; 106:I115-9.10.1161/01.cir.0000032887.55215.5cSearch in Google Scholar

19. Wolf G, Neilson EG. Angiotensin II as a renal growth factor. J Am Soc Nephrol. 1993; 3:1531-40.10.1681/ASN.V3915318507808Search in Google Scholar

20. Hsu SM, Raine L, Fanger H. Use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981; 29:577-80.10.1177/29.4.61666616166661Open DOISearch in Google Scholar

21. Moreno PR, Murcia AM, Palacio IF, Leon MN, Bernardi VH, Fuster V, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000; 102:2180-4.10.1161/01.CIR.102.18.218011056089Open DOISearch in Google Scholar

22. Westerman D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, et al. Contributions of cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiuomyopathy.The role of angiotensin receptor antagonism. Diabetes. 2007; 56:641-6.10.2337/db06-116317327431Open DOISearch in Google Scholar

23. Lavrentyev EN, Estes AM, Malik KU. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ Res. 2007; 101: 455-64.10.1161/CIRCRESAHA.107.15185217626897Open DOISearch in Google Scholar

24. Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, et al. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 2000; 101:2206-12.10.1161/01.CIR.101.18.2206Open DOISearch in Google Scholar

25. Rueckschloss U, Quinn MT, Holtz J, Morawietz H. Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2002; 22:1845-51.10.1161/01.ATV.0000035392.38687.6512426214Open DOISearch in Google Scholar

26. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17betaestradiol through Sp-1 in human vascular endothelial cells. J Biol Chem. 2000; 275:25781-90.10.1074/jbc.M00123520010829018Search in Google Scholar

27. Adeghate E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem. 2004; 261:187-91.10.1023/B:MCBI.0000028755.86521.11Search in Google Scholar

28. Miyata T, van Ypersele de Strihou C, Ueda Y, Ichimori K, Inagi R, Onogi H, et al. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol. 2002; 13:2478-87.10.1097/01.ASN.0000032418.67267.F2Open DOISearch in Google Scholar

29. Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon- (carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 1991; 30:1205-10.10.1021/bi00219a0071899338Open DOISearch in Google Scholar

30. Koka V. Wang W, Huang XR, Kim-Mitsuyama S, Truong LD, Lan HY. Advanced glycation end products activate a chymase-dependent angiotensin IIgenerating pathway in diabetic complication. Circulation. 2006; 113:1353-6010.1161/CIRCULATIONAHA.105.575589140150016520412Open DOISearch in Google Scholar

31. Davis BJ, Forbes JM, Thomas MC, Jerums G, Burns WC, Kawachi H, et al. Superior renoprotective effects of combination therapy with ACE and AGE inhibition in the diabetic spontaneously hypertensive rat. Diabetologia. 2004; 47:89-9710.1007/s00125-003-1256-814647892Open DOISearch in Google Scholar

32. Grandhee SK, Monnier VM. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991; 266:11649-53.10.1016/S0021-9258(18)99006-XSearch in Google Scholar

33. Portero-Otin M, Pamplona R, Bellmunt MJ, Ruiz MC, Prat J, Salvayre R, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes. 2002; 51:1535-42.10.2337/diabetes.51.5.153511978653Open DOISearch in Google Scholar

eISSN:
1875-855X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine