Zacytuj

Kleiger, R. E., Miller, J. P., Bigger, J. T. & Moss, A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59, 256–262 (1987). KleigerR. E. MillerJ. P. BiggerJ. T. MossA. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction Am. J. Cardiol. 59 256 262 1987 10.1016/0002-9149(87)90795-8 Search in Google Scholar

Bigger, J. T. et al. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85, 164–171 (1992). BiggerJ. T. Frequency domain measures of heart period variability and mortality after myocardial infarction Circulation 85 164 171 1992 10.1161/01.CIR.85.1.164 Search in Google Scholar

Malliani, A., Lombardi, F., Pagani, M. & Cerutti, S. Power Spectral Analysis of Cardiovascular Variability in Patients at Risk for Sudden Cardiac Death. Journal of Cardiovascular Electrophysiology vol. 5 274–286 (1994). MallianiA. LombardiF. PaganiM. CeruttiS. Power Spectral Analysis of Cardiovascular Variability in Patients at Risk for Sudden Cardiac Death Journal of Cardiovascular Electrophysiology 5 274 286 1994 10.1111/j.1540-8167.1994.tb01164.x8193742 Search in Google Scholar

C. Matei, Coman, I. M. & Apetrei, E. Heart rate variability in dilated cardiomyopathy. Rom. J. Cardiol. 22, 191–200 (2012). MateiC. ComanI. M. ApetreiE. Heart rate variability in dilated cardiomyopathy Rom. J. Cardiol. 22 191 200 2012 Search in Google Scholar

Fang, S.-C., Wu, Y.-L. & Tsai, P.-S. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol Res Nurs 22, 423–425 (2020). FangS.-C. WuY.-L. TsaiP.-S. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies Biol Res Nurs 22 423 425 2020 10.1177/109980041987744231558032 Search in Google Scholar

Kubota, Y., Chen, L. Y., Whitsel, E. A. & Folsom, A. R. Heart rate variability and lifetime risk of cardiovascular disease: the Atherosclerosis Risk in Communities Study. Ann. Epidemiol. 27, 619–625.e2 (2017). KubotaY. ChenL. Y. WhitselE. A. FolsomA. R. Heart rate variability and lifetime risk of cardiovascular disease: the Atherosclerosis Risk in Communities Study Ann. Epidemiol 27 619 625.e2 2017 10.1016/j.annepidem.2017.08.024582127229033120 Search in Google Scholar

Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology vol. 141 122–131 (2010). ThayerJ. F. YamamotoS. S. BrosschotJ. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors International Journal of Cardiology 141 122 131 2010 10.1016/j.ijcard.2009.09.54319910061 Search in Google Scholar

(UK), N. C. C. for C. C. Surgery for Parkinson's disease. (2006). (UK), N. C. C. for C. C Surgery for Parkinson's disease 2006 Search in Google Scholar

Sixel-Döring, F. et al. Tiefe Hirnstimulation bei Essenziellem Tremor: Empfehlungen der Deutschen Arbeitsgemeinschaft Tiefe Hirnstimulation. Nervenarzt vol. 80 662–665 (2009). Sixel-DöringF. Tiefe Hirnstimulation bei Essenziellem Tremor: Empfehlungen der Deutschen Arbeitsgemeinschaft Tiefe Hirnstimulation Nervenarzt 80 662 665 2009 10.1007/s00115-009-2703-719404603 Search in Google Scholar

Schrader, C. et al. Tiefe Hirnstimulation bei Dystonie: Empfehlungen der Deutschen Arbeitsgemeinschaft Tiefe Hirnstimulation. Nervenarzt vol. 80 656–661 (2009). SchraderC. Tiefe Hirnstimulation bei Dystonie: Empfehlungen der Deutschen Arbeitsgemeinschaft Tiefe Hirnstimulation Nervenarzt 80 656 661 2009 10.1007/s00115-009-2696-219404605 Search in Google Scholar

Zangiabadi, N. et al. Deep brain stimulation and drug-resistant epilepsy: A review of the literature. Frontiers in Neurology vol. 10 (2019). ZangiabadiN. Deep brain stimulation and drug-resistant epilepsy: A review of the literature Frontiers in Neurology 10 2019 10.3389/fneur.2019.00601656369031244761 Search in Google Scholar

Hamani, C. et al. Deep brain stimulation for obsessive-compulsive disorder: Systematic review and evidence-based guideline sponsored by the American society for stereotactic and functional neurosurgery and the congress of neurological surgeons (CNS) and endorsed by the CNS and American association of neurological surgeons. Neurosurgery vol. 75 327–333 (2014). HamaniC. Deep brain stimulation for obsessive-compulsive disorder: Systematic review and evidence-based guideline sponsored by the American society for stereotactic and functional neurosurgery and the congress of neurological surgeons (CNS) and endorsed by the CNS and American association of neurological surgeons Neurosurgery 75 327 333 2014 10.1227/NEU.000000000000049925050579 Search in Google Scholar

Dandekar, M. P., Fenoy, A. J., Carvalho, A. F., Soares, J. C. & Quevedo, J. Deep brain stimulation for treatment-resistant depression: An integrative review of preclinical and clinical findings and translational implications. Mol. Psychiatry 23, 1094–1112 (2018). DandekarM. P. FenoyA. J. CarvalhoA. F. SoaresJ. C. QuevedoJ. Deep brain stimulation for treatment-resistant depression: An integrative review of preclinical and clinical findings and translational implications Mol. Psychiatry 23 1094 1112 2018 10.1038/mp.2018.229483673 Search in Google Scholar

Pandey, S. & Sarma, N. Deep brain stimulation: Current status. Neurology India vol. 63 9–18 (2015). PandeyS. SarmaN. Deep brain stimulation: Current status Neurology India 63 9 18 2015 10.4103/0028-3886.15262325751463 Search in Google Scholar

Kleiger, R. E., Stein, P. K. & Bigger, J. T. Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology vol. 10 88–101 (2005). KleigerR. E. SteinP. K. BiggerJ. T. Heart rate variability: Measurement and clinical utility Annals of Noninvasive Electrocardiology 10 88 101 2005 10.1111/j.1542-474X.2005.10101.x693253715649244 Search in Google Scholar

Malik, M. et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996). MalikM. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use Circulation 93 1043 1065 1996 10.1093/oxfordjournals.eurheartj.a014868 Search in Google Scholar

Pfeiffer, R. F. Autonomic Dysfunction in Parkinson's Disease. Neurotherapeutics vol. 17 1464–1479 (2020). PfeifferR. F. Autonomic Dysfunction in Parkinson's Disease Neurotherapeutics 17 1464 1479 2020 10.1007/s13311-020-00897-4785120832789741 Search in Google Scholar

Gregory, T. & Smith, M. Cardiovascular complications of brain injury. Contin. Educ. Anaesthesia, Crit. Care Pain 12, 67–71 (2012). GregoryT. SmithM. Cardiovascular complications of brain injury Contin. Educ. Anaesthesia, Crit. Care Pain 12 67 71 2012 10.1093/bjaceaccp/mkr058 Search in Google Scholar

Allan, L. M. et al. Autonomic dysfunction in dementia. J. Neurol. Neurosurg. Psychiatry 78, 671–677 (2007). AllanL. M. Autonomic dysfunction in dementia J. Neurol. Neurosurg. Psychiatry 78 671 677 2007 10.1136/jnnp.2006.102343211767817178816 Search in Google Scholar

Trachani, E. et al. Heart rate variability in Parkinson's disease unaffected by deep brain stimulation. Acta Neurol. Scand. 126, 56–61 (2012). TrachaniE. Heart rate variability in Parkinson's disease unaffected by deep brain stimulation Acta Neurol. Scand. 126 56 61 2012 10.1111/j.1600-0404.2011.1605.x22007954 Search in Google Scholar

Dafsari, H. S. et al. Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson's disease. Brain Stimul. 13, 1697–1705 (2020). DafsariH. S. Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson's disease Brain Stimul. 13 1697 1705 2020 10.1016/j.brs.2020.09.01933038595 Search in Google Scholar

Basiago, A. & Binder, D. K. Effects of deep brain stimulation on autonomic function. Brain Sciences vol. 6 (2016). BasiagoA. BinderD. K. Effects of deep brain stimulation on autonomic function Brain Sciences 6 2016 10.3390/brainsci6030033503946227537920 Search in Google Scholar

Sumi, K. et al. Effect of subthalamic nucleus deep brain stimulation on the autonomic nervous system in parkinson's disease patients assessed by spectral analyses of R-R interval variability and blood pressure variability. Stereotact. Funct. Neurosurg. 90, 248–254 (2012). SumiK. Effect of subthalamic nucleus deep brain stimulation on the autonomic nervous system in parkinson's disease patients assessed by spectral analyses of R-R interval variability and blood pressure variability Stereotact. Funct. Neurosurg. 90 248 254 2012 10.1159/000338090 Search in Google Scholar

Pavel, B. et al. Electrical stimulation in the claustrum area induces a deepening of isoflurane anesthesia in rat. Brain Sci. 9, 304 (2019). PavelB. Electrical stimulation in the claustrum area induces a deepening of isoflurane anesthesia in rat Brain Sci. 9 304 2019 10.3390/brainsci9110304 Search in Google Scholar

Koubeissi, M. Z., Bartolomei, F., Beltagy, A. & Picard, F. Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav. 37, 32–35 (2014). KoubeissiM. Z. BartolomeiF. BeltagyA. PicardF. Electrical stimulation of a small brain area reversibly disrupts consciousness Epilepsy Behav. 37 32 35 2014 10.1016/j.yebeh.2014.05.027 Search in Google Scholar

Joutsa, J., Horn, A., Hsu, J. & Fox, M. D. Localizing parkinsonism based on focal brain lesions. Brain 141, 2445–2456 (2018). JoutsaJ. HornA. HsuJ. FoxM. D. Localizing parkinsonism based on focal brain lesions Brain 141 2445 2456 2018 10.1093/brain/awy161 Search in Google Scholar

Gubellini, P., Salin, P., Kerkerian-Le Goff, L. & Baunez, C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Progress in Neurobiology vol. 89 79–123 (2009). GubelliniP. SalinP. Kerkerian-Le GoffL. BaunezC. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior Progress in Neurobiology 89 79 123 2009 10.1016/j.pneurobio.2009.06.003 Search in Google Scholar

Beurrier, C., Bioulac, B., Audin, J. & Hammond, C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J. Neurophysiol. 85, 1351–1356 (2001). BeurrierC. BioulacB. AudinJ. HammondC. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons J. Neurophysiol. 85 1351 1356 2001 10.1152/jn.2001.85.4.1351 Search in Google Scholar

Benazzouz, A. et al. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99, 289–295 (2000). BenazzouzA. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat Neuroscience 99 289 295 2000 10.1016/S0306-4522(00)00199-8 Search in Google Scholar

Herrington, T. M., Cheng, J. J. & Eskandar, E. N. Mechanisms of deep brain stimulation. Journal of Neurophysiology vol. 115 19–38 (2016). HerringtonT. M. ChengJ. J. EskandarE. N. Mechanisms of deep brain stimulation Journal of Neurophysiology 115 19 38 2016 10.1152/jn.00281.2015476049626510756 Search in Google Scholar

Rodrigues, F. B., Duarte, G. S., Prescott, D., Ferreira, J. & Costa, J. Deep brain stimulation for dystonia. Cochrane Database of Systematic Reviews vol. 2019 (2019). RodriguesF. B. DuarteG. S. PrescottD. FerreiraJ. CostaJ. Deep brain stimulation for dystonia Cochrane Database of Systematic Reviews 2019 2019 10.1002/14651858.CD012405.pub2635324930629283 Search in Google Scholar

Nazzaro, J. M., Lyons, K. E. & Pahwa, R. Deep brain stimulation for essential tremor. in Handbook of Clinical Neurology vol. 116 155–166 (Elsevier B.V., 2013). NazzaroJ. M. LyonsK. E. PahwaR. Deep brain stimulation for essential tremor in Handbook of Clinical Neurology 116 155 166 Elsevier B.V. 2013 10.1016/B978-0-444-53497-2.00013-924112892 Search in Google Scholar

Aubignat, M., Lefranc, M., Tir, M. & Krystkowiak, P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Revue Neurologique vol. 176 770–779 (2020). AubignatM. LefrancM. TirM. KrystkowiakP. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives Revue Neurologique 176 770 779 2020 10.1016/j.neurol.2020.02.009 Search in Google Scholar

Modolo, J., Mosekilde, E. & Beuter, A. New insights offered by a computational model of deep brain stimulation. J. Physiol. Paris 101, 56–63 (2007). ModoloJ. MosekildeE. BeuterA. New insights offered by a computational model of deep brain stimulation J. Physiol. Paris 101 56 63 2007 10.1016/j.jphysparis.2007.10.007 Search in Google Scholar

Piña-Fuentes, D. et al. Toward adaptive deep brain stimulation for dystonia. Neurosurg. Focus 45, (2018). Piña-FuentesD. Toward adaptive deep brain stimulation for dystonia Neurosurg. Focus 45 2018 10.3171/2018.5.FOCUS18155 Search in Google Scholar

Priori, A., Foffani, G., Rossi, L. & Marceglia, S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology vol. 245 77–86 (2013). PrioriA. FoffaniG. RossiL. MarcegliaS. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations Experimental Neurology 245 77 86 2013 10.1016/j.expneurol.2012.09.013 Search in Google Scholar

Gómez-Urquijo, S. M., Gutiérrez-Ibarluzea, I., Bueno-López, J. L. & Reblet, C. Percentage incidence of ˜-aminobutyric acid neurons in the claustrum of the rabbit and comparison with the cortex and putamen. Neurosci. Lett. 282, 177–180 (2000). Gómez-UrquijoS. M. Gutiérrez-IbarluzeaI. Bueno-LópezJ. L. RebletC. Percentage incidence of ˜-aminobutyric acid neurons in the claustrum of the rabbit and comparison with the cortex and putamen Neurosci. Lett. 282 177 180 2000 10.1016/S0304-3940(00)00889-2 Search in Google Scholar

Smith, J. B., Liang, Z., Watson, G. D. R., Alloway, K. D. & Zhang, N. Interhemispheric resting-state functional connectivity of the claus-trum in the awake and anesthetized states. Brain Struct. Funct. 222, 2041–2058 (2017). SmithJ. B. LiangZ. WatsonG. D. R. AllowayK. D. ZhangN. Interhemispheric resting-state functional connectivity of the claus-trum in the awake and anesthetized states Brain Struct. Funct. 222 2041 2058 2017 10.1007/s00429-016-1323-9538213227714529 Search in Google Scholar

Sijercic, S., Krdzalic, A., Avdagic, H. & Krdzalic, G. Incidence of Cardiac Dysfunction After Brain Injury. Med. Arch. (Sarajevo, Bosnia Herzegovina) 72, 316–318 (2018). SijercicS. KrdzalicA. AvdagicH. KrdzalicG. Incidence of Cardiac Dysfunction After Brain Injury Med. Arch. (Sarajevo, Bosnia Herzegovina) 72 316 318 2018 10.5455/medarh.2018.72.316-318628290830524160 Search in Google Scholar

Paxinos, G. & Watson Charles. The Rat Brain in Stereotaxic Coordinates - 7th Edition. (Academic Press, 2013). PaxinosG. CharlesWatson The Rat Brain in Stereotaxic Coordinates 7th Edition Academic Press 2013 Search in Google Scholar

Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Hear. J 17, 354–381 (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Eur. Hear. J 17 354 381 1996 10.1093/oxfordjournals.eurheartj.a014868 Search in Google Scholar

El-Sayed HL, Kotby AA, Tomoum HY, El-Hadidi ES, El Behery SE, E.-G. A. Non-invasive assessment of cardioregulatory autonomic functions in children with epilepsy. Acta Neurol. Scand. 115, 377–384 (2007). El-SayedHL KotbyAA TomoumHY El-HadidiES El BeherySE E.-G. A. Non-invasive assessment of cardioregulatory autonomic functions in children with epilepsy Acta Neurol. Scand. 115 377 384 2007 10.1111/j.1600-0404.2006.00792.x17511845 Search in Google Scholar

Dillingham, C. M., Jankowski, M. M., Chandra, R., Frost, B. E. & O’Mara, S. M. The claustrum: Considerations regarding its anatomy, functions and a programme for research. Brain Neurosci. Adv. 1, 239821281771896 (2017). DillinghamC. M. JankowskiM. M. ChandraR. FrostB. E. O’MaraS. M. The claustrum: Considerations regarding its anatomy, functions and a programme for research Brain Neurosci. Adv. 1 239821281771896 2017 10.1177/2398212817718962705823732166134 Search in Google Scholar

BENARROCH, E. E. The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective. Mayo Clin. Proc. 68, 988–1001 (1993). BENARROCHE. E. The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective Mayo Clin. Proc. 68 988 1001 1993 10.1016/S0025-6196(12)62272-1 Search in Google Scholar

Oppenheimer, S. & Cechetto, D. The insular cortex and the regulation of cardiac function. Compr. Physiol. 6, 1081–1133 (2016). OppenheimerS. CechettoD. The insular cortex and the regulation of cardiac function Compr. Physiol. 6 1081 1133 2016 10.1002/cphy.c140076 Search in Google Scholar

Oppenheimer, S. M. & Cechetto, D. F. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 533, 66–72 (1990). OppenheimerS. M. CechettoD. F. Cardiac chronotropic organization of the rat insular cortex Brain Res. 533 66 72 1990 10.1016/0006-8993(90)91796-J Search in Google Scholar

Kim, R. et al. Long-term effect of subthalamic nucleus deep brain stimulation on freezing of gait in Parkinson's disease. J. Neurosurg. 131, 1797–1804 (2019). KimR. Long-term effect of subthalamic nucleus deep brain stimulation on freezing of gait in Parkinson's disease J. Neurosurg. 131 1797 1804 2019 10.3171/2018.8.JNS1835030641837 Search in Google Scholar

Schlenstedt, C. et al. Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson's disease: a systematic review and meta-analysis. European Journal of Neurology vol. 24 18–26 (2017). SchlenstedtC. Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson's disease: a systematic review and meta-analysis European Journal of Neurology 24 18 26 2017 10.1111/ene.1316727766724 Search in Google Scholar

Luís Oliveira, N. et al. Heart rate variability in myocardial infarction patients: Effects of exercise training. Revista Portuguesa de Cardiologia vol. 32 687–700 (2013). Luís OliveiraN. Heart rate variability in myocardial infarction patients: Effects of exercise training Revista Portuguesa de Cardiologia 32 687 700 2013 10.1016/j.repc.2013.02.01023993292 Search in Google Scholar

eISSN:
2734-6382
Język:
Angielski