Otwarty dostęp

A commentary on the respirometric evaluation of biodegradable cod fractions in industrial wastewater


Zacytuj

[1] AQUASIM, http://www.eawag.ch/en/department/siam/software/ (access: 07.06.2018).Search in Google Scholar

[2] Babu G., Varghese W., Biodegradation of cyclohexanone and cyclohexanol by the activated sludge process, Journal of Scientific & Industrial Research, Vol. 58/1999, 864–868.Search in Google Scholar

[3] Baczyński T., Przegląd metod służących wyznaczaniu frakcji ChZT w ściekach, “Gaz, Woda i Technika Sanitarna”, Vol. 84 (10)/2010, 29–35.Search in Google Scholar

[4] Baczynski T., Kulakowski P., Biodegradable fractions in paper industry wastewater, [In:] IWA Specialized Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, LEMTECH Consulting, Krakow 2005, 1345–1349.Search in Google Scholar

[5] Coen F., Petersen B., Vanrolleghem P., Vanderhaegen B., Henze M., Model–based characterisation of hydraulic, kinetic and influent properties of an industrial WWTP, “Water Science and Technology”, Vol. 37 (12)/1998, 317–326.10.2166/wst.1998.0557Search in Google Scholar

[6] Cokgor E.U., Insel G., Aydin E., Orhon D., Respirometric evaluation of a mixture of organic chemicals with different biodegradation kinetics, “Journal of hazardous materials”, Vol. 161 (1)/2009, 35–41.10.1016/j.jhazmat.2008.03.05118439757Search in Google Scholar

[7] Ekama G.A., Dold P.L., Marais G.V., Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems, “Water Science and Technology”, Vol. 18 (6)/1986, 91–114.10.2166/wst.1986.0062Search in Google Scholar

[8] Fan J., Vanrolleghem P.A., Lu S., Qiu Z., Modification of the kinetics for modeling substrate storage and biomass growth mechanism in activated sludge system under aerobic condition, “Chemical engineering science”, Vol. 78/2012, 75–81.10.1016/j.ces.2012.05.004Search in Google Scholar

[9] Ginestet P., Audic J.M., Urbain V., Block J.C., Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide, “Applied and Environmental Microbiology”, Vol. 64 (6)/1998, 2266–2268.10.1128/AEM.64.6.2266-2268.19981063109603846Search in Google Scholar

[10] Guisasola A., Sin G., Baeza J.A., Carrera J., Vanrolleghem P.A., Limitations of ASM1 and ASM3: a comparison based on batch oxygen uptake rate profiles from different full–scale wastewater treatment plants, “Water Science and Technology, Vol. 51 (10–11)/2005, 69–77.10.2166/wst.2005.0680Search in Google Scholar

[11] Helle S.S., Duff S.J., Multi–component kinetics of activated sludge treatment of bleached kraft mill effluent, “Water Science and Technology”, Vol. 50 (3)/2004, 11–20.10.2166/wst.2004.0153Search in Google Scholar

[12] Insel G., Karahan O., Özdemir S., Pala L., Katipoğlu T., Cokgör E.U., Orhon D., Unified basis for the respirometric evaluation of inhibition for activated sludge, “Journal of Environmental Science and Health Part A”, Vol. 41 (9)/2006, 1763–1780.10.1080/1093452060077889516849124Search in Google Scholar

[13] Insel G., Celikyilmaz G., Ucisik-Akkaya E., Yesiladali K., Cakar Z.P., Tamerler C., Orhon D., Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions, “Biotechnology and bioengineering”, Vol. 96 (1)/2007, 94–105.10.1002/bit.2116316937401Search in Google Scholar

[14] Jaromin K. M., Szaja A., Łagód G. Charakterystyka ścieków komunalnych określana na podstawie udziału frakcji ChZT, [In:] Polska Inżynieria Środowiska. Prace. Tom I, eds. M. R. Dudzińska, A. Pawłowski, Komitet Inżynierii Środowiska PAN, Lublin 2012, 115–130.Search in Google Scholar

[15] Karahan–Gül Ö., Artan N., Orhon D., Henze M., Van Loosdrecht M.C., Respirometric assessment of storage yield for different substrates, “Water Science and Technology”, Vol. 46 (1–2)/2002, 345–352.10.2166/wst.2002.0500Search in Google Scholar

[16] Lehtovirta–Morley L.E., Verhamme D.T., Nicol G.W., Prosser J.I., Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil, “Soil Biology and Biochemistry”, Vol 62/2013, 129–133.10.1016/j.soilbio.2013.01.020Search in Google Scholar

[17] Marx C., Ahnert M., Krebs P., Kühn V., The adaptation of nitrifying microorganisms to inhibiting substances at meso–and psychrophilic temperature conditions, “Water Science and Technology”, Vol. 68 (1)/2013, 83–90.10.2166/wst.2013.227Search in Google Scholar

[18] Nowak O., Schweighofer P., Svardal K., Nitrification inhibition–a method for the estimation of actual maximum autotrophic growth rates in activated sludge systems, “Water Science and Technology”, Vol. 30 (1)/1994, 9–19.10.2166/wst.1994.0248Search in Google Scholar

[19] Nelson D.W., Huber D., Nitrification inhibitors for corn production, corn.agronomy.wisc. edu/Management/pdfs/NCH55.pdf (access: 07.06.2018).Search in Google Scholar

[20] Orhon D., Babuna F.G., Karahan O., Industrial wastewater treatment by activated sludge, IWA Publishing, London 2009.10.2166/9781780401836Search in Google Scholar

[21] Rezouga F., Hamdi M., Sperandio M., Variability of kinetic parameters due to biomass acclimation: case of para–nitrophenol biodegradation, “Bioresource Technology”, Vol. 100 (21)/2009, 5021–5029.10.1016/j.biortech.2009.05.039Search in Google Scholar

[22] Spanjers H., Vanrolleghem P.A., Respirometry, [In:] Experimental methods in wastewater treatment, eds. van Loosdrecht M.C., Nielsen P.H., Lopez–Vazquez C.M., Brdjanovic D., IWA publishing, London 2016.Search in Google Scholar

[23] Surmacz-Gorska J., Gernaey K., Demuynck C., Vanrolleghem P., Verstraete W., Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements, “Water Research”, Vol. 30 (5)/1996, 1228–1236.10.1016/0043-1354(95)00280-4Search in Google Scholar

[24] Tünay O., Zengin G.E., Kabdaşlı I., Karahan Ö., Performance of magnesium ammonium phosphate precipitation and its effect on biological treatability of leather tanning industry wastewaters, “Journal of Environmental Science and Health, Part A”, Vol. 39 (7)/2004, 1891–1902.10.1081/ESE-12003788615242135Search in Google Scholar

[25] Van Loosdrecht M.C., Lopez-Vazquez C.M., Meijer S.C., Hooijmans C.M., Brdjanovic D., Twenty–five years of ASM1: past, present and future of wastewater treatment modelling, “Journal of Hydroinformatics”, Vol. 17 (5)/2015, 697–718.10.2166/hydro.2015.006Search in Google Scholar

[26] Van Loosdrecht M.C., Nielsen P.H., Lopez–Vazquez C.M., Brdjanovic D., Experimental methods in wastewater treatment, IWA publishing, London 2016.10.2166/9781780404752Search in Google Scholar

[27] Vanrolleghem P.A., Sin G., Gernaey K.V., Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes, “Biotechnology and Bioengineering”, Vol. 86 (3)/2004, 277–290.10.1002/bit.2003215083508Search in Google Scholar

[28] Wang Y., Li W., Irini A., A novel and quick method to avoid H2O2 interference on COD measurement in Fenton system by Na2SO3 reduction and O2 oxidation, “Water Science and Technology”, Vol. 68 (7)/2013, 1529–1535.10.2166/wst.2013.39624135101Search in Google Scholar

[29] Wentzel M.C., Mbewe A., Ekama G.A., Batch test for measurement of readily biodegradable COD and active organism concentrations in municipal waste waters, “WATER SA-PRETORIA”, Vol. 21/1995, 117–124.Search in Google Scholar

[30] Wissemeier A.H., Linzmeier W., Gutser R., Weigelt W., Schmidhalter U., The new nitrification inhibitor DMPP (ENTEC®) – Comparisons with DCD in model studies and field applications, [In:] Plant Nutrition, eds. Horst H.J. et al., Springer, Dordrecht 2001, 702–703.10.1007/0-306-47624-X_340Search in Google Scholar