Otwarty dostęp

Aesthetic and functional aspects of BIPV – an architectural outlook


Zacytuj

Amo, S.A., Sukki, F.M., Bennadji, A., Sellami, N. (2021). Myth or gold? The power of aesthetics in the adoption of building integrated photovoltaics (BIPVs). Energy Nexus, 4, 100021. https://doi.org/10.1016/j.nexus.2021.100021 Search in Google Scholar

Barraud, E., Stained Glass Solar Windows for the Swiss Tech Convention Center. https://actu.epfl.ch/news/stained-glass-solar-windows-for-the-swiss-tech-con/ (accessed 20.06.2023). Search in Google Scholar

Biyik, E., Araz, M., Hepbasl, A., Shahrestani, M., Yao, R. Shao, L., Essah, E. et al. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering Science and Technology. Engineering Science and Technology. An International Journal, 20, 3, 833–858. https://doi.org/10.1016/j.jestch.2017.01.009 Search in Google Scholar

Costanzo, V., Yao, R. Essah, E., Shao, L., Shahrestani, M., Oliveira, A.C., Araz, M., Hepbasli, A., Biyik, E. (2018). A method of strategic evaluation of energy performance of building integrated Photovoltaic in the urban context. Journal of Cleaner Production, 184, 82–91. https://doi.org/10.1016/j.jclepro.2018.02.139 Search in Google Scholar

Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): A review. Solar Energy, 237, 213-230. https://doi.org/10.1016/j.solener.2022.04.013 Search in Google Scholar

Gosh, A., Norton, B. (2019). Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply. Renewable Energy, 131, 993-1001. https://doi.org/10.1016/j.renene.2018.07.115 Search in Google Scholar

Gonçalves, H., Silva, A., Ramalho, A., Rodrigues, C. (2008). Thermal Performance of a Passive Solar Office Building in Portugal, materiały konferencyjne Eurosun2008- 1st International Congress on Heating, Cooling and Buildings, Lisbon 7-10 October 2008 (In: Proceedings-Sustainable Building, no. 382). Search in Google Scholar

Haghighat, S., Sadeh, H. (2023). Parametric design of an automated kinetic building façade using biM: A case study perspective. Journal of Building Engineering, 73, 106800. https://doi.org/10.1016/j.jobe.2023.106800 Search in Google Scholar

Heinstein, P., Ballif, Ch., Perret-Aebi, L-E. (2013). Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers, and Myths. Green, 3(2), 125–156. https://doi.org/10.1515/green-2013-0020 Search in Google Scholar

Hermannsdörfer, I., Rüb Ch. (2005). Solar Design. Photovoltaics for Old Buildings, Urban Space, Landscapes. Ed. Jovis. Search in Google Scholar

Hu, J. H., Chen, W. J., Liu, Y., Zhao, B., Yang, D., & Ge, B. (2017). Two-layer ETFE cushions integrated flexible photovoltaics: Prototype development and thermal performance assessment. Energy and Buildings, 141, 238–46. https://doi.org/10.1016/j.enbuild.2017.02.038 Search in Google Scholar

Huang, L.-M., Hu, Ch.-W., Pen, Ch.-Y., Su, Ch.-H., Ho, K.-Ch.(2016). Integration of polyelectrolyte based electrochromic material in printable photovoltaic electrochromic module. Solar Energy Materials & Solar Cells 145, 69–75. https://doi.org/10.1016/j.solmat.2015.05.011 Search in Google Scholar

Humm, O., Toggweiler, P. (1993)., Photovoltaics in Architecture, Birkhäuser. Search in Google Scholar

International Definitions of “BIPV.” PVPS Task 15, Subtask C-International Framework for BIPV Specification. Report IEA-PVPS T15-4:2018 IEA. international Energy Agency 2018. Search in Google Scholar

Jones, D.L. (1999). The Solar office: a solar powered building with a comprehensive energy strategy (w: European Directory of Sustainable and Energy Efficient Building, ed. James&James). Search in Google Scholar

Li, D.H.W., Lam T.N.T., Chan W.W.H., Mak A.H.K., (2009). Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy, 86, Issue 5, 722-729. https://doi.org/10.1016/j.apenergy.2008.08.009 Search in Google Scholar

Lucchi, E. (2022). Integration between photovoltaic systems and cultural heritage: A socio-technical comparison of international policies, design criteria, applications, and innovation developments. Energy Policy, 171, 113303 https://doi.org/10.1016/j.enpol.2022.113303 Search in Google Scholar

Marchwiński, J.(2023). Architectural analysis of photovoltaic (PV) modules applications on non-flat roofs. Acta Scientiarum Polonorum Architectura 22, (1), 3-12. DOI: 10.22630/ASPA.2023.22.1.1. Search in Google Scholar

Marchwiński, J. (2021b). Evaluation of PV Powered Switchable Glazing Technologies in terms of their Suitability for Office Windows in Moderate Climates, Journal of Green Building 16(4), 81–110. https://doi.org/10.3992/jgb.16.4.81 Search in Google Scholar

Marchwiński, J. (2012). Fasady fotowoltaiczne. Technologia PV w architekturze. Warszawa: Wydawnictwo WSEiZ. Search in Google Scholar

Marchwiński, J. (2015). Fotowoltaika zintegrowana z budynkiem (BIPV) w kontekście kształtowania form architektonicznych; In: Kontekst energe-tyczny kształtowania form architektonicznych w badaniach i projektach (red. Marchwiński J.). Warszawa: Wydawnictwo WSEiZ. Search in Google Scholar

Marchwiński, J. (2021a). Role and Factors of Solar Facades Shaping in Contemporary Architecture. Budownictwo i Architektura 20(3) 43–56. https://doi.org/10.35784/bud-arch.2640 Search in Google Scholar

Marchwiński, J., Starzyk, A. (2021). Problematyka projektowania budynków przedszkoli ze szczególnym uwzględnieniem aspektów ekologiczno-ener- getycznych. Projekt energoefektywnego przedszkola w Michałowicach Cz. 2. Builder 286(5), 44–49. 10.5604/01.3001.0014.8342 Search in Google Scholar

Marchwiński, J. (2022). Theoretical Models of PV-EC Windows Based on the Architectural Analysis of Pv-EC Technologies. Architecture, Civil Engineering, Environment 15(2), 95–107. https://doi.org/10.2478/acee-2022-0018 Search in Google Scholar

Matuska T., Zmrhal V., Shading Analysis of Façade Collectors in Urban Environment, materiały konferencyjne Eurosun2008- 1st International Congress on Heating, Cooling and Buildings, Lizbon 7-10 October 2008 (In: Proceedings-Sustainable Building, no. 089). Search in Google Scholar

Mirabi, E., Abarghuie, F.A., Arazi,R. (2021). Integration of buildings with third-generation photovoltaic solar cells: a review. Clean Energy, 5, issue 3, 505–526. https://doi.org/10.1093/ce/zkab031 Search in Google Scholar

Muszyńska-Łanowy, M. (2011). Fotowoltaika w kolorze, Świat Szkła 4(11). https://www.swiat-szkla.pl/kontakt/4469-fotowoltaika-w-kolorze.html Search in Google Scholar

Orhon, A.V. (2016). A Review on Adaptive Photovoltaic Facades. Conference: Solar TR2016 International Solar Conference & Exhibition At: İstanbul. Search in Google Scholar

Pabasara Upalakshi Wijeratne W.M., Samarasinghe, T., Jing Yang, R., Wakefield, R. (2022). Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. Applied Energy 309, 1, 118476. https://doi.org/10.1016/j.apenergy.2021.118476 Search in Google Scholar

Parasuraman, D. (2023) A Review on Dye-Sensitized Solar Cells (DSSCs), Materials and Applications. Iranian Journal of Materials Science and Engineering 20(1), 1–23. DOI: 10.22068/ijmse.2994 Search in Google Scholar

Park, N.G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65–72. https://doi.org/10.1016/j.mattod.2014.07.007 Search in Google Scholar

Pastuszak, J., Węgierek, P. (2022). Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 12,15(16): 5542. https://doi:10.3390/ma15165542. Search in Google Scholar

Pelle, M., Causione, F., Maturi, L., Moser, D. (2023). Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation. Energies 16(4), 1991. https://doi.org/10.3390/en16041991 Search in Google Scholar

Pelle, M., Lucchi, E., Maturi, L., Astigarraga A., Causone F (2020). Coloured biPv Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies 13(17), 4506. https://doi.org/10.3390/en13174506 Search in Google Scholar

Photovoltaic Architecture Design Guide, Tokyo 2001. Search in Google Scholar

Pieter, J. (1970). Praca naukowa. Warszawa: PWN. Search in Google Scholar

Prasad, S.V.D., Krishnanaik, V., & Babu, K.R. (2013). Analysis of Organic Photovoltaic Cell. International Journal of Science and Modern Engineering, 1(9), 20–23. https://doi.org/10.1016/j.jestch.2020.08.006 Search in Google Scholar

Reijenga, T.H. PV in Architecture No.22 (2011). In: A. Lucue, S. Hegedus, Handbook of Photovoltaic Science and Engineering, Willey ed., Chichester. Search in Google Scholar

Reijenga, T, Kaan, H. (2000). Roof and Facade Integration of PV Systems in a Laboratory Building. Renovation of the ECN Building 31 with PV, materiały z międzynarodowej konferencji Sustainable Building 2000 (In: Proceedings), Maastricht 22-25.10.2000. Search in Google Scholar

Roberts S., Guariento N. (2009). Building Integrated Photovoltaics. A Handbook. basel: birkhäuser. Search in Google Scholar

Romaní, J., Ramos, A., Salom, J. (2022). Review of Transparent and Semi-Transparent building-integrated Photovoltaics for Fenestration Application Modeling in building Simulations. Energies, 15, 3286. https://doi.org/10.3390/en15093286 Search in Google Scholar

Rosa, F. (2020). Building-Integrated Photovoltaics (BIPV) in Historical buildings: Opportunities and Constraints. Energies, 13, 3628. https://doi.org/10.3390/en13143628 Search in Google Scholar

Saif, O., Zekry A.H., Abouelatta, M., Shaker, A. (2023). A Comprehensive Review of Tandem Solar Cells integrated on Silicon Substrate: iii/v vs Perovskite, Silicon (Springer). https://doi.org/10.1007/s12633-023-02466-8 Search in Google Scholar

Sarniak, M.T.(2008). Podstawy fotowoltaiki. Warszawa: OWPW. Search in Google Scholar

Shukla, A.K., Sudhakar, K., Baredar, P. (2017). Recent advancement in BIPV product technologies: A review. Energy and Buildings 140, 188-195. https://doi.org/10.1016/j.enbuild.2017.02.015 Search in Google Scholar

Skandalos,N., Kapsalis, V., Karamanis, D. (2022a). The effect of local climatic conditions on the building integration of photovoltaics, iOP Conference Series: Earth and Environmental Science, 1123, 3rd International Conference on Environmental Design (ICED2022) 22/10/2022–23/10/2022 Athens, Greece. https://doi.org/10.1088/1755-1315/1123/1/012020 Search in Google Scholar

Skandalos, N., Wang, M., Kapsalis, V., D’Agostino, D., Parker, D., Bhuvad, S.S., Udayraj, Peng, J., Karamanis, D. (2022b) Building PV integration according to regional climate conditions: biPv regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases. Renewable and Sustainable Energy Reviews. Volume 169, 112950. https://doi.org/10.1016/j.rser.2022.112950 Search in Google Scholar

Strong, S. (2005) Building Integrated Photovoltaics (BIPV). Whole Building Design Guide, Solar Design Associates, 11. Search in Google Scholar

Tabakovic, M., Fechner, H., Knoebl, K. (2016). Development of innovative educational material for Building-integrated PV (Demi4BiPV). Framework and Requirements’ Analysis. The Dem4BIPV Consortium. Search in Google Scholar

Talvik, M., Ilomets, S., Klõšeiko, P., Kalamees, T., Põldaru, M., Heim, D.(2023). Hygrothermal Performance of Thick PCM Mortar behind PV Panels in Energy-Activated ETiCS Facades. buildings 13, 1572. https://doi.org/10.3390/buildings13061572 Search in Google Scholar

Taşer, A., Koyunbaba, B.K., Kazanasmaz, T. (2023). Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and developments. Solar Energy, 251, 171. https://doi.org/10.1016/j.solener.2022.12.039 Search in Google Scholar

Tochigi, M., Tsukamoto, K. (2005). Itoman City Hall, materiały konferencyjne The 2005 World Sustainable Building Conference (SB05 Tokyo), Tokyo 27–29 September 2005 (In: Proceedings no. 01-080). Search in Google Scholar

Transparent solar panels. http://www.solar-constructions.com/wordpress/transparent-solar-panels/ (accessed 24.06.2023). Search in Google Scholar

Uddin, M., Jie J., Wang, Ch., Zhang, Ch., Ke, W. (2023). A review on photovoltaic combined vacuum glazing: Recent advancement and prospects. Energy and Buildings, 286, 1, 112939. https://doi.org/10.1016/j.enbuild.2023.112939 Search in Google Scholar

Urbanetz, J., Zomer, C.D., Rüther, R. (2011). Compromises between form and function. Building and Environment 46(10), 2107–2113. https://doi.org/10.1016/j.buildenv.2011.04.024 Search in Google Scholar

Xiang, Ch., Szybińska-Matusiak, B. (2022). Façade Integrated Photovoltaics design for high-rise buildings with balconies, balancing daylight, aesthetic and energy productivity performance. Journal of Building Engineering, 57, 104950. https://doi.org/10.1016/j.jobe.2022.104950 Search in Google Scholar

Yang, R., Zang, Y., Yang, J., Wakefield, R., Nguyen, K., Shi, L., Trigunarsyah, B., Parolini, F., Bonomo, P., Frontini, F., Qi, D., Ko, Y., Deng, X. (2023). Fire safety requirements for building integrated photovoltaics (BIPV): A cross- -country comparison. Renewable and Sustainable Energy Reviews, 173, 113112. https://doi.org/10.1016/j.rser.2022.113112 Search in Google Scholar

Yin, Y., Chen, W., Hu, J., et al. (2020). Photothermal-structural-fluid behaviors of Pv-ETFE cushion roof in summer: Numerical analysis using three- -dimensional multiphysics model. Energy Build, 228, 110448. https://doi.org/10.1016/j.enbuild.2020.110448 Search in Google Scholar

Zhang, X., Lau S.S.Y, Lau S-K, Zhao, Y.(2018). Photovoltaic integrated shading devices (PVSDs): A review. August 2018. Solar Energy 170, 947-968. https://doi.org/10.1016/j.solener.2018.05.067 Search in Google Scholar

Zielonko-Jung, K. (2013). Kształtowanie przestrzenne architektury ekologicznej w strukturze miasta. Warszawa: OWPW. Search in Google Scholar