Otwarty dostęp

Influence of heat treatment method on selected physicochemical and biological properties of fluoride-substituted calcium apatite

, , ,  oraz   
27 sty 2025

Zacytuj
Pobierz okładkę

Belamri D., Harabi A., Karbouaa N., Benyahia N., The effect of KF on the structural evolution of natural hydroxyapatite during conventional and microwave sintering, Ceram. Int., 2020, 46 (1), 1189–1194. Search in Google Scholar

Borkowski L., Belcarz A., Przekora A., Ginalska G., Production Method for Biocompatible Implant Material, Polish Patent no. 235803, 6 October 2020. Search in Google Scholar

Borkowski L., Przekora A., Belcarz A., Palka K., Józefaciuk G., Lübek T., Jojczuk M., Nogalski A., Ginalska G., Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential, Mater Sci. Eng. C, 2020, 116, 111211. Search in Google Scholar

Chaari K., Ayed F.B., Bouaziz J., Bouzouita K., Elaboration and characterization of fluorapatite ceramic with controlled porosity, Materials Chemistry and Physics, 2009, 113 (1), 219–226. Search in Google Scholar

El-Gendy N.S., El-salamony R.A., Younis S.A., Green synthesis of fluorapatite from waste animal bones and the photo-catalytic degradation activity of a new ZnO/green bio-catalyst nano-composite for removal of chlorophenols, J. Water Process Eng., 2016, 12, 8–19. Search in Google Scholar

Etok S.E., Valsami-Jones E., Wess T.J., Hiller J.C., Maxwell C.A., Rogers K.D., Manning D.A.C., White M.L., Lopezv-Capel E., Collins M.J., Buckley M., Penkman K.E.H., Woodgate S.L., Structural and chemical changes of thermally treated bone apatite, J. Mater Sci., 2007, 42 (23), 9807–9816. Search in Google Scholar

Fathi M.H., Zahrani E.M., Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying, J. Alloys Compd., 2009, 475 (1–2), 408–414. Search in Google Scholar

Freund F., Knobel R.M., Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton Trans., 1977, 11, 1136–1140. Search in Google Scholar

Ghiasi B., Sefidbakht Y., Mozaffari-jovin S., Gharehcheloo B., Mehrarya M., Khodadadi A., Rezaei M., Ranaei siada S.O., Uskoković V., Hydroxyapatite as a bio-material – a gift that keeps on giving, Drug. Dev. Ind. Pharm., 2020, 46 (7), 1035–1062. Search in Google Scholar

Hammerli J., Hermann J., Tollan P., Naab F., Measuring in situ CO2 and H2O in apatite via ATR-FTIR, Contrib. Mineral Petrol., 2021, 176, 1–20. Search in Google Scholar

Klimuszko E., Sierpińska T., Gołębiewska M., Construction of enamel and its resistance to pathological factors. A literature review, Prosthodontics, 2015, 65 (3), 241–251. Search in Google Scholar

Kokubo T., Bioceramics and their Clinical Applications, Woodhead Publishing Series in Biomaterials, CRC Press, 2008. Search in Google Scholar

Kurmaev E.Z., Matsuya S., Shin S., Watanabe M., Eguchi R., Ishiwata Y., Takeuchi T., Iwami M., Observation of fluorapatite formation under hydrolysis of tetracalcium phosphate in the presence of KF by means of soft X-ray emission and absorption spectroscopy, J. Mater Sci.-Mater M., 2002, 13 (1), 33–36. Search in Google Scholar

Laska A., Biomateriały stosowane w inżynierii tkankowej do regeneracji tkanek, Zeszyty Naukowe Towarzystwa Doktorantów Uniwersytetu Jagiellońskiego, Nauki Ścisłe, 2017, 14, 187–196. Search in Google Scholar

Legeros R.Z., Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater, 1993, 14 (1), 65–88. Search in Google Scholar

Malina D., Biernat K., Sobczak-kupiec A., Studies on sintering process of synthetic hydroxyapatite, Acta Biochim. Pol., 2013, 60 (4), 851–855. Search in Google Scholar

Nakade O., Koyama H., Arai J., Ariji H., Takada J., Kaku T., Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro, Arch. Oral Biol., 1999, 44, 89–92. Search in Google Scholar

Obada D.O., Dauda E.T., Abifarin J.K., Dodoo-Arhin D., Bansod N.D., Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature, Mater Chem. Phys., 2020, 239, 122099. Search in Google Scholar

Obada D.O., Idris N., Idris M., Dan-asabe B., Salami K.A., Oyedeji A.N., Csaki S., Sowunmi A.R., Abolade S.A., Akinpelu S.B., Akande A., The effect of sintering dwell time on the physicochemical properties and hardness of hydroxyapatite with insights from ab initio calculations, CSCEE, 2024, 9, 100648. Search in Google Scholar

Ooi C.Y., Hamdi M., Ramesh S., Properties of hydroxyapatite produced by annealing of bovine bone, Ceram. Int., 2007, 33 (7), 1171–1177. Search in Google Scholar

Pajor K., Pajchel L., Kolmas J., Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology – A Review, Materials, 2019, 12 (17), 2683. Search in Google Scholar

Poovendran K., Wilson K.J., Amalgamation and characterization of porous hydroxyapatite bio ceramics at two various temperatures, Mater Sci. Semicond. Process, 2019, 100, 255–261. Search in Google Scholar

Prokopiev O., Sevostianov I., Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature, Mater Sci. Eng. A, 2006, 431 (1–2), 218–227. Search in Google Scholar

Przekora A., Czechowska J., Pijocha D., Ślósarczyk A., Ginalska G., Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro?, Open Life Sci., 2014, 9 (3), 277–289. Search in Google Scholar

Rey C., Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro, Cells and Mater, 1995, 5, 345–356. Search in Google Scholar

Rintoul L., Wentrup-byrne E., Suzuki S., Grøndahl L., FT-IR spectroscopy of fluoro-substituted hydroxyapatite: strengths and limitations, J. Mater Sci. Mater Med., 2007, 18, 1701–1709. Search in Google Scholar

Ślosarczyk A., Biomateriały ceramiczne, Biocybernetyka i Inżynieria Biomedyczna, [in:] S. Blazewicz, L. Stoch, Biomateriały, AOW EXIT, 2003. Search in Google Scholar

Ślosarczyk A., Szymura-oleksiak J., Mycek B., The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants, Biomaterials, 2000, 21, 1215–1221. Search in Google Scholar

Standard ISO 10993-5:2009. Biological Evaluation of Medical Devices – Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009. Search in Google Scholar

Szczepkowska M., Łuczuk M., Porous materials for the medical applications, Syst. Wspomagania Inżynierii Prod., 2014, 2, 231–239. Search in Google Scholar

Tacker R.C., Hydroxyl ordering in igneous apatite, Am. Min., 2004, 89 (10), 1411–1421. Search in Google Scholar

Taheri M.M., Kadir M.R.A., Shokuhfar T., Hamlekhan A., Assadian M., Shirdar M.R., Mirjalili A., Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods, Ceram. Int., 2015, 41 (8), 9867–9872. Search in Google Scholar

Telesiński A., Śnioszek M., Bioindykatory zanieczyszczenia środowiska naturalnego fluorem, Bromatol. Chem. Toksyk, 2009, 42 (4), 1148–1145. Search in Google Scholar

Tredwin C.J., Young A.M., Abou Neel E.A., Georgiou G., Knowles J.C., Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation, J. Mater Sci.-Mater M., 2014, 25 (1), 47–53. Search in Google Scholar

Trzaskowska M., Vivcharenko V., Przekora A., The impact of hydroxyapatite sintering temperature on its micro-structural, mechanical, and biological properties, I. J. Mol. Sci., 2023, 24 (6), 5083. Search in Google Scholar

Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis, J Biochem, 1997, 121 (2), 317–324. Search in Google Scholar

Wang A.J., Lu Y.P., Zhu R.F., Li S.T., Xiao G.Y., Zhao G.F., Xu W.H., Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, J. Biomed. Mater Res. A., 2008, 87 (2), 557–562. Search in Google Scholar

Wirtu Y.D., Melak F., Yitbarek M., Astatkie H., Aluminum coated natural zeolite for water defluoridation: a mechanistic insight, Groundw. Sustain. Dev., 2021, 12, 100525. Search in Google Scholar

Xu Z., Qian G., Feng M., Using polyacrylamide to control particle size and synthesize porous nano hydroxyapatite, Results Phys., 2020, 16, 102991. Search in Google Scholar

Yoon B.H., Kim H.W., Lee S.H., Bae C.J., Koh Y.H., Kong Y.M., Kim H.E., Stability and cellular responses to fluorapatite-collagen composites, Biomaterials, 2005, 26 (16), 2957–2963. Search in Google Scholar