This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ayturk U., Puttlitz C., Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine, Comput. Methods Biomech. Biomed. Eng., 2011, 14, 695–705.Search in Google Scholar
Blanchard R., Morin C., Malandrino A. et al., Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics, Int. J. Numer. Method. Biomed. Eng., 2016, 32, 1–36.Search in Google Scholar
Chabarova O., Alekna V., Kaèianauskas R., Ardatov O., Finite element investigation osteoporotic lumbar L1 vertebra buckling in a presence of torsional load, Mechanics, 2017, 23, 326–333.Search in Google Scholar
Chabarova O., Kaèianauskas R., Alekna V., Buckling of osteoporotic lumbar: finite element analysis: research article, Research in Medical and Engineering Sciences, 2019, 8 (2), DOI: 10.31031/RMES.2019.08.000683.Search in Google Scholar
Chabarova O., Numerical investgation of the effect of bone tissue pathology on human spine stability, Dissertation, Vilnius Gediminas Technical University, 2020.Search in Google Scholar
Chotai S., Gupta R., Pennings J.S. et al., Frailty and Sarcopenia: Impact on Outcomes Following Elective Degenerative Lumbar Spine Surgery, Spine (Phila, Pa 1976), 2022, 47, 1410–1417, DOI: https://doi.org/10.1097/BRS.0000000000004384.Search in Google Scholar
Diamond T.H., Clark W.A., Kumar S.V., Histomorphometric analysis of fracture healing cascade in acute osteoporotic vertebral body fractures, Bone, 2007, 40, 775–780.Search in Google Scholar
Du H.G., Liao S.H., Jiang Z. et al., Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint, Saudi Pharm. J., 2016, 24, 305–311.Search in Google Scholar
Finley S.M., Brodke D.S., Spina N.T. et al., FEBio finite element models of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin., 2018, 21, 444–452, DOI: https://doi.org/10.1080/10255842.2018.1478967.Search in Google Scholar
Garges K.J., Nourbakhsh A., Morris R. et al., A Comparison of the Torsional Stiffness of the Lumbar Spine in Flexion and Extension, J. Manipulative. Physiol. Ther., 2008, 31, 563–569.Search in Google Scholar
Ghadiri M., Fracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis, Int. J. Adv. Biol. Biom. Res., 2014, 2, 2217–2224.Search in Google Scholar
Hamilton E.J., Ghasem-Zadeh A., Gianatti E. et al., Structural Decay of Bone Microarchitecture in Men with Prostate Cancer Treated with Androgen Deprivation Therapy, J. Clin. Endocrinol. Metab., 2010, 95, E456–E463.Search in Google Scholar
Huang K., Zhang J., Three-dimensional lumbar spine generation using variational autoencoder, Med. Eng. Phys., 2023, 120, 104046, DOI: https://doi.org/10.1016/J.MEDENGPHY.2023.104046.Search in Google Scholar
Jiang Y., Lin D., Guo X. et al., Vertebral fractures are likely to occur in lumbar vertebra in patients with osteoporosis and even in osteopenia, Jt. Bone Spine., 2018, 77, 1627–1627, DOI: https://doi.org/10.1136/annrheumdis-2018-eular.5051.Search in Google Scholar
Johansen J.G., Nork M., Grand F., Torsional instability of the lumbar spine, Riv. Neuroradiol., 1999, 12, 193–195.Search in Google Scholar
Jones A.C., Wilcox R.K., Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, Med. Eng. Phys., 2008, 30, 1287–1304.Search in Google Scholar
Kim Y.H., Wu M., Kim K., Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure, J. Appl. Math., 2013, 1–6.Search in Google Scholar
Kinzl M., Schwiedrzik J., Zysset P.K., Pahr D.H., An experimentally validated finite element method for augmented vertebral bodies, Clin. Biomech., 2013, 28, 15–22.Search in Google Scholar
Lan C., Kuo C., Chen C., Hu H., Finite element analysis of biomechanical behavior of whole thoraco-lumbar spine with ligamentous effect, CJM, 2013, 26–41.Search in Google Scholar
Lochmüller E.M., Eckstein F., Kaiser D., Zeller J.B., Landgraf J., Putz R., Steldinger R., Prediction of vertebral failure loads from spinal and femoral dual-energy X-ray absorptiometry, and calcaneal ultrasound: an in situ analysis with intact soft tissues, Bone, 1998, 23, 417–424.Search in Google Scholar
Loughenbury P.R., Tsirikos A.I., Gummerson N.W., Spinal biomechanics – biomechanical considerations of spinal stability in the context of spinal injury, Orthop. Trauma, 2016, 30, 369–377.Search in Google Scholar
Madenci E., Guven I., Fundamentals of Discretization, [in:] The Finite Element Method and Applications in Engineering Using ANSYS, Springer US, 2015, 35–74.Search in Google Scholar
Maknickas A., Alekna V., Ardatov O. et al., FEM-based compression fracture risk assessment in osteoporotic lumbar vertebra L1, Appl. Sci.-Basel, 2019, 9, DOI: https://doi.org/10.3390/APP9153013.Search in Google Scholar
Mazlan M.H., Todo M., Takano H., Yonezawa I., Finite Element Analysis of Osteoporotic Vertebrae with First Lumbar (L1) Vertebral Compression Fracture, IJAPM, 2014, 4, 267–274.Search in Google Scholar
Mcdonald K., Little J., Pearcy M., Adam C., Development of a Multi-Scale Finite Element Model of the Osteoporotic Lumbar Vertebral Body for the Investigation of Apparent Level Vertebra Mechanics and Micro-Level Trabecular Mechanics, K. Med. Eng. Phys., 2010, 32, 653–661.Search in Google Scholar
Molinari L., Falcinelli C., On the human vertebra computational modeling: a literature review, Meccanica, 2022, 57, DOI: https://doi.org/10.1007/s11012-021-01452-x.Search in Google Scholar
Molinari L., Falcinelli C., Gizzi A., Di Martino A., Effect of pedicle screw angles on the fracture risk of the human vertebra: A patient-specific computational model, J. Mech. Behav. Biomed. Mater., 2021, 116, 104359, DOI: https://doi.org/10.1016/J.JMBBM.2021.104359.Search in Google Scholar
Monteiro N.M.B., Da Silva M.P.T., Folgado J.O.M.G., Melancia J.P.L., Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation, Multibody Syst. Dyn., 2011, 25, 245–270.Search in Google Scholar
Okamoto Y., Murakami H., Demura S. et al, The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model, The Spine Journal, 2015, 15, 713–720.Search in Google Scholar
Polikeit A., Nolte L.P., Ferguson S.J., Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit, J. Biomech., 2004, 37, 1061–1069.Search in Google Scholar
Pietruszczak S., Inglis D., Pande G.N., A fabric-dependent criterion for bone, J. Biomechanics, 1999, 32, 1071–1079.Search in Google Scholar
Provatidis C., Vossou C., Koukoulis I. et al., A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score, Comput. Methods. Biomech. Bio-med. Engin., 2010, 13.185–195, DOI: https://doi.org/10.1080/10255840903099703.Search in Google Scholar
Su X., Shen H., Shi W. et al., Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation, Am. J. Transl. Res., 2017, 9, 4036–4045.Search in Google Scholar
Taylor D., Scaling effects in the fatigue strength of bones from different animals, J. Theor. Biology, 2000, 206, 299–306.Search in Google Scholar
Yang L., Dempsey M., Brennan A. et al., Ireland DXA-FRAX may differ significantly and substantially to Web-FRAX, Arch. Osteoporos., 2023, 18, 43, DOI: https://doi.org/10.1007/S11657-023-01232-Y.Search in Google Scholar
Yang S., Xia H., Cong M. et al., Unilateral pedicle screw fixation of lumber spine: A safe internal fixation method, Heliyon, 2022, 8, e11621, DOI: https://doi.org/10.1016/j.heliyon.2022.e11621.Search in Google Scholar
Zahaf S., Habib H., Mansouri B. et al., The Effect of the Eccentric Loading on the Components of the Spine, Global Journals Inc., 2016, 16, 2249–4596.Search in Google Scholar
Zebaze R.M., Ghasem-Zadeh A., Bohte A. et al., Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study, The Lancet, 2010, 375, 1729–1736.Search in Google Scholar
Zhu R., Niu W.X., Zeng Z.L. et al., The effects of muscle weakness on degenerative spondylolisthesis: A finite element study, Clin. Biomech., 2017, 41, 34–38.Search in Google Scholar
3D Slicer image computing platform, Available online: https://www.slicer.org/ [Accessed: 8 January 2023].Search in Google Scholar
Ansys. Engineering Simulation Software, Available online: https://www.ansys.com/ [Accessed: 8 January 2023].Search in Google Scholar
MeshLab, Available online: https://www.meshlab.net/ [Accessed: 8 January 2023].Search in Google Scholar
Solidworks. 3D CAD Design Software and PDM Systems, Available online: https://www.solidworks.com/ [Accessed: 8 January 2023].Search in Google Scholar