This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cao J.D., Kirkland N.T., Laws K.J. et al., Ca-Mg-Zn bulk metallic glasses as bioresorbable metals, Acta Biomater., 2012, 8 (6), 2375–2383, DOI: 10.1016/j.actbio.2012.03.009.Search in Google Scholar
Cormac J. Byrne et al., Materials science. Bulk metallic glasses, Science, 2008, DOI: 10.1126/science.1158864.Search in Google Scholar
CSPA, BPR, CMD et al., New Mg-Ca-Zn amorphous alloys: Biocompatibility, wettability and mechanical properties-Science Direct, Materialia, 2023, 12, DOI: 10.1016/j.mtla.2020.100799.Search in Google Scholar
Li Q.F., Weng H.R., Suo Z.Y. et al., Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites, Materials Science and Engineering: A, 2008, 487 (1–2), 301–308, DOI: 10.1016/j.msea.2007.10.027.Search in Google Scholar
Li Z., Gu X., Lou S. et al., The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 2008, 29 (10), 1329–1344, DOI: 10.1016/j.biomaterials.2007.12.021.Search in Google Scholar
Liu Q.S., Study on degradation behavior and mechanical properties of Biocompatible Mg-Zn-Sn-Sr materials, Chongqing University, 2022, DOI: 10.27670/d.cnki.gcqdu. 2020.001808.Search in Google Scholar
Ramya M., Sarwat S.G., Udhayabanu V. et al., Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg-Zn-Ca bulk metallic glass for biomedical applications, Materials and Design, 2015, 86, 829–835, DOI: 10.1016/j.matdes.2015.07.154.Search in Google Scholar
Senkov O.N., Scott J.M., Glass forming ability and thermal stability of ternary Ca-Mg-Zn bulk metallic glasses, Journal of Non-Crystalline Solids, 2005, 351 (37–39), 3087–3094, DOI: 10.1016/j.jnoncrysol.2005.07.022.Search in Google Scholar
Szyba D., Babilas R., Bajorek A., Structural and electrochemical study of resorbable Ca32Mg12Zn38Yb18-xBx (x = 1, 2, 3) metallic glasses in Ringer’s solution, Journal of Alloys and Compounds, 2019, 815, 152313, DOI: 10.1016/j.jallcom.2019.152313.Search in Google Scholar
Wang J., Ma Y., Guo S. et al., Effect of Sr on the microstructure and biodegradable behavior of Mg-Zn-Ca-Mn alloys for implant application, Materials and Design, 2018, 153, 308–316, DOI:10.1016/j.matdes.2018.04.062.Search in Google Scholar
Xie X., Wang X., Wang Y. et al., Ca-Mg-Zn metallic glass as degradable biomaterials developed for potential orthopaedic applications, Bone, 2010, 47 (Suppl. S3), S425–S425, DOI: 10.1016/j.bone.2010.09.249.Search in Google Scholar
Zberg B., Uggowitzer P.J., Loffler J.F., Mg-Zn-Ca glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater., 2009, 8 (11), 887–891, DOI: 10.1038/nmat2542.Search in Google Scholar
Zhang J., Ren L., Yang K., Cytotoxicity of Ti-6al-4V-5Cu Alloy to MC3T3-E1 Cells, Acta Metallurgica Sinica (English Letters), 2020, DOI: 10.1007/s40195-020-01158-1.Search in Google Scholar
Zhao Y.Y., Zhao X., Structural relaxation and its influence on the elastic properties and notch toughness of Mg-Zn-Ca bulk metallic glass, Journal of Alloys and Compounds, 2012, 515, 154–160, DOI: 10.1016/j.jallcom.2011.11.125.Search in Google Scholar
Zhu M.L., Preparation and properties of biomedical Mg-Zn-Ca amorphous composites, D Xi ‘an Technological University, 2020, DOI: 10.27391/d.cnki.gxagu.2019.000180.Search in Google Scholar