Otwarty dostęp

Tensile and flexural moduli for human orbital wall bones – comparative study

, , ,  oraz   
18 maj 2024

Zacytuj
Pobierz okładkę

Association W M, World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects, JAMA – J. Am. Med. Assoc., 310, 2191–2194. Search in Google Scholar

Auperrin A., Delille R., Lesueur D., Bruyère K., Masson C., Drazétic P., Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples, J. Biomech., 2014, 47, 1180–1185. Search in Google Scholar

Brunzinii A., Mandolinii M., Manierii S., Gennanii M., Mazzoli A., Pagnoni M., Iannetti G., Modugn A., Orbital wall reconstruction by selective laser sintered mould, 2017, 260–264. Search in Google Scholar

Chepurnyi Y., Chernogorskyi D., Petrenko O., Kopchak A., Reconstruction of Post-Traumatic Orbital Defects and Deformities with Custom-Made Patient-Specific Implants: Evaluation of the Efficacy and Clinical Outcome, Craniomaxillofacial Trauma Reconstr. Open, 2019, 3, 0039–1685505. Search in Google Scholar

Chiang E., Saadat L.V., Spitz J.A., Bryar P.J., Chambers C.B., Etiology of orbital fractures at a level I trauma center in a large metropolitan city, Taiwan J. Ophthalmol., 2016, 6, 26–31. Search in Google Scholar

Chou C., Kuo Y.R., Chen C.C., Lai C.S., Lin S.D., Huang S.H., Lee S.S., Medial orbital wall reconstruction with porous polyethylene by using a transconjunctival approach with a caruncular extension, Ann. Plast. Surg., 2017, 78, S89–S94. Search in Google Scholar

Favier V., Gallet P., Subsol G., Captier G., Understanding the biomechanical properties of skull base tissues is essential for the future of virtual reality endoscopic sinus and skull base surgery simulators, Clin. Exp. Otorhinolaryngol., 2019, 12, 231–232. Search in Google Scholar

Gunarajah D.R., Samman N., Biomaterials for repair of orbital floor blowout fractures: A systematic review, J Oral Maxillofac. Surg., 2013, 71, 550–570. Search in Google Scholar

Heo J.J., Chong J.-H., Han J.J., Jung S., Kook M.-S., Oh H.-K., Park H.-J., Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture, Maxillofac. Plast. Reconstr. Surg., 2018, 40, 1–5. Search in Google Scholar

Kang S., Kwon J., Ahn C.J., Esmaeli B., Kim G.B., Kim N., Sa H.S., Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction, Eye, 2018, 32, 1864–1870. Search in Google Scholar

Kim D.H., Kim Y., Park J.S., Kim S.W., Virtual reality simulators for endoscopic sinus and skull base surgery: The present and future, Clin. Exp. Otorhinolaryngol., 2019, 12, 12–17. Search in Google Scholar

Koberda M., Skorek A., Kłosowski P., Żmuda Trzebiatowski M.A., Żerdzicki K., Lemski P., Stodolska-Koberda U., Numerical and Clinical Analysis of an Eyeball Injuries Under Direct Impact, Int. J. Occup. Med. Environ. Health, 2023, 36, 263–273. Search in Google Scholar

Larysz D., Wolański W., Kawlewska E., Mandera M., Gzik M., Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng. Biomech., 2012, 14, 19–26. Search in Google Scholar

van Leeuwen A.C., Ong S.H., Vissink A., Grijpma D.W., Bos R.R.M., Reconstruction of orbital wall defects: Recommendations based on a mathematical model, Exp. Eye Res., 2012, 97, 10–18. Search in Google Scholar

Mazumder M.M.G., Miller K., Bunt S., Mostayed A., Joldes G., Day R., Hart R., Wittek A., Mechanical properties of the brain-skull interface, Acta Bioeng. Biomech., 2013, 15, 3–11. Search in Google Scholar

Morgan E.F., Bayraktar H.H., Keaveny T.M., Trabecular bone modulus-density relationships depend on anatomic site, J. Biomech., 2003, 36, 897–904. Search in Google Scholar

Motherway J.A., Verschueren P., Van der Perre G., Van der Sloten J., Gilchrist M.D., The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position, J. Biomech., 2009, 42, 2129–2135. Search in Google Scholar

Nagasao T., Miyamoto J., Shimizu Y., Jiang H., Nakajima T., What happens between pure hydraulic and buckling mechanisms of blowout fractures?, J. Cranio-Maxillofacial. Surg., 2010, 38, 306–313. Search in Google Scholar

Reiter M.J., Schwope R.B., Theler J.M., Postoperative CT of the orbital skeleton after trauma: Review of normal appearances and common complications, Am. J. Roentgenol., 2016, 206, 1276–1285. Search in Google Scholar

Schaller A., Huempfner-Hierl H., Hemprich A., Hierl T., Biomechanical mechanisms of orbital wall fractures – A transient finite element analysis, J. Cranio-Maxillofacial. Surg., 2013, 41, 710–717. Search in Google Scholar

Seong W.J., Kim U.K., Swift J.Q., Heo Y.C., Hodges J.S., Ko C.C., Elastic properties and apparent density of human edentulous maxilla and mandible, Int. J. Oral Maxillofac. Surg., 2009, 38, 1088–1093. Search in Google Scholar

Śródka W., Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model, Acta Bioeng. Biomech., 2006, 8, 69–77. Search in Google Scholar

Union Tep and the C of the E, Directive 2004/23/Ec of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells, Off. J. Eur. Union, 2004, 48–58. Search in Google Scholar

Verschueren P., Delye H., Berckmans D., Verpoest I., Goffin J., Van der Sloten J., Van Der Perre G., Analysis of fracture characteristics of cranial bone for Fe modelling, Int. Res. Counc. Biomech. Impact – 2006 Int. IRCOBI Conf. Biomech. Impact, Proc., 2006, 357–360. Search in Google Scholar

Ye L.-X., Sun X.-M., Zhang Y.-G., Zhang Y., Materials to facilitate orbital reconstruction and soft tissue filling in posttraumatic orbital deformaties, Plast. Aesthetic Res., 2016, 3, 86. Search in Google Scholar

Żerdzicki K., Lemski P., Kłosowski P., Skorek A., Żmuda Trzebiatowski M.A., Koberda M., Tensile modulus of human orbital wall bones cut in sagittal and coronal planes, PLoS One, 2021, 16, 1–15. Search in Google Scholar

Żmuda Trzebiatowski M.A., Kłosowski P., Skorek A., Żerdzicki K., Lemski P., Koberda M., Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit, Sci. Rep., 2020, 10, 1–13. Search in Google Scholar

Żmuda Trzebiatowski M.A., Kłosowski P., Skorek A., Żerdzicki K., Lemski P., Koberda M., Validation of Hydraulic Mechanism during Blowout Trauma of Human Orbit Depending on the Method of Load Application, Appl. Bionics Biomech., 2021, 2021. Search in Google Scholar