This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Avril S., Evans S., (eds.) Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics, Springer Int., 2017.Search in Google Scholar
Boyer G., Pailler Matttei C., Molimard J., Pericoi M., Laquieze S., Zahouani H., Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing, Medical Eng. Phys., 2012, 34, 172–178.Search in Google Scholar
Casley-Smith J.R., The fine structure and functioning of tissue channels and lymphatics, Lymphology, 1980, 12, 177–183.Search in Google Scholar
Chan W.-H., Huang Y.-L., Lin C., Lin C.-Y., Cheng M.-H., Chu S.-Y., Acoustic radiation force impulse elastography: Tissue stiffness measurement in limb lymphedema, Radiology, 2018, 289, 759–765.Search in Google Scholar
Dragan S.Ł., Kuropka P., Kulej M., Gabryś P., Nikodem A., Changes in the mechanical properties of femoral cartilage tissue in advanced osteoarthritis, Acta Bioeng. Biomech., 2020, 22 (1), 143–152.Search in Google Scholar
Feldman J.L., Stout N.L., Wanchai A., Stewart B.R., Cornier J.N., Armer J.M., Intermittent pneumatic compression therapy: A systematic review, Lymphology, 2012, 45, 13–25.Search in Google Scholar
Frauziols F., Molimard J., Navarro L., Badel P., Viallon M., Testa R., Avril S., Prediction of the biomechanical effects of compression therapy by finite element modeling and ultrasound elastography, IEEE Trans. Biomedical Eng., 2015, 62, 1011–1019.Search in Google Scholar
Guyton C., Scheel K., Murphree D., Interstitial fluid pressure: III. Its effect on resistance to tissue fluid mobility, Circulation Research, 1966, 19, 412–419.Search in Google Scholar
Hara H., Mihara M., Comparison of two methods, the sponge method and Young’s modulus, for evaluating stiffness of skin or subcutaneous tissue in the extremities of patients with lymphedema: A pilot study, Lymphat. Res. Biol., 2018, 16, 464–470.Search in Google Scholar
Iivarinen J.T., Korhonen R.K., Julkunen P., Jurvelin J.S., Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device, Med. Eng. Phys., 2011, 33, 1245–1253.Search in Google Scholar
Iivarinen J.T., Korhonen R.K., Julkunen P., Jurvelin J.S., Experimental and computational analysis of soft tissue mechanical response under negative pressure forearm, Skin. Res. Techn., 2013, 19, e356–e365.Search in Google Scholar
Kaczmarek M., Olszewski W.L., Nowak J., Zaleska M., The hydromechanics of edema fluid in lymphedematous lower limb during intermittent pneumatic compression, Lymphat. Res. Biol., 2015, 13, 260–267.Search in Google Scholar
Kaczmarek M., Subramaniam R., Neff S., The Hydro-Mechanics of Hydrocephalus: Steady State Solutions for Cylindrical Geometry, Bull Math. Biol., 1997, 59, 295–323.Search in Google Scholar
Li C., Borja R.J., Regueiro R.A., Dynamics of porous media at finite strain, Comput. Methods Appl. Mech. Eng., 2004, 193, 3837–3870.Search in Google Scholar
Loret B., Simoes F.M.F., Biomechanical aspects of soft tissues, CRC Press, 2017.Search in Google Scholar
Olszewski W.L., Jain P., Ambujam G., Zaleska M., Cakala M., Gradalski T., Tissue fluid pressure and flow in the subcutaneous tissue in lymphedema-hints for manual and pneumatic compression, Phlebolymphology, 2010, 17, 144–150.Search in Google Scholar
Pailler-Mattei C., Bec S., Zahouani H., In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Med. Eng. Phys., 2008, 30, 599–606.Search in Google Scholar
Wiig H., Swartz M.A., Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer, Physiol. Rev., 2012, 92, 1005–1060.Search in Google Scholar
Zaleska M., Olszewski W.L., Durlik M., The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limb, Lymphat. Res. Biol., 2014, 12, 103–109.Search in Google Scholar
Zaleska M., Olszewski W.L., Cakała M., Cwikla J., Butlewski T., Intermittent pneumatic compression enhaces formation of edema tissue fluid channels in lymphedema of lower limbs, Lymphat. Res. Biol., 2015, 13, 146–153.Search in Google Scholar
Zaleska M., Olszewski W.L., Durlik M., Kaczmarek M., A Novel Clinical Test for Setting Intermittent Pneumatic Compression Parameters Based on Edema Fluid Hydromechanics in the Lymphedematous Calf, Lymphat. Res. Biol., 2015, 13, 208–214.Search in Google Scholar
Zheng Y.-P., Mak A.F.T., Lue B., Objective assessment of limb tissue elasticity: development of a manual indentation procedure, J. Rehab. Res. and Dev., 1999, 36, 71–85.Search in Google Scholar
Zheng Y.-P., Huang Y.-P., Measurement of soft tissue elasticity in vivo, CRC Press, 2016.Search in Google Scholar
Zingerman K.M., Levin V.A., Some qualitative effects in the exact solutions of the Lame problem for large deformations, J. Appl. Math. Mech., 2012, 76, 205–219.Search in Google Scholar
Żmudzińska M., Inglot M., Zaleska-Dorobisz U., Jankowski L., Świątek-Najwer E., The assessment of the applicability of shear wave elastography in modelling of the mechanical parameters of the liver, Acta Bioeng. Biom., 2018, 20 (4), 59–64.Search in Google Scholar