Zacytuj

1. Talarowska M, Florkowski, Gałecki P, Orzechowska A, Janiak M, Zboralski K. Cognitive impairments among diabetic patients. Pol Merkur Lek 2008 Oct; 25(148): 349–355.Search in Google Scholar

2. Dzierzewski JM, Dautovich N, Ravyts S. Sleep and Cognition in Older Adults. Sleep Medicine Clinics 2018 Mar; 13(1): 93–106. https://doi.org/10.1016/j.jsmc.2017.09.009.Search in Google Scholar

3. Weinstein G, Elran Barak R, Schnaider Beeri M, Ravona-Springer R. Personality traits and cognitive function in old-adults with type – 2 diabetes. Aging Ment Heal 2019 Oct; 23(10): 1317–1325. https://doi.org/10.1080/13607863.2018.1493720.Search in Google Scholar

4. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia 2013 Jan; 9(1): 63–75.e2. https://doi.org/10.1016/j.jalz.2012.11.007.Search in Google Scholar

5. Nilsson H, Berglund JS, Renvert S. Periodontitis, tooth loss and cognitive functions among older adults. Clin Oral Investig 2018 Jun; 22(5): 2103–2109. https://doi.org/10.1007/s00784-017-2307-8.Search in Google Scholar

6. Kronholm E, Sallinen M, Suutama T, Sulkava R, Era P, Partonen T. Self-reported sleep duration and cognitive functioning in the general population. J Sleep Res 2009 Dec; 18(4): 436–446. https://doi.org/10.1111/j.1365-2869.2009.00765.x.Search in Google Scholar

7. Tworoger SS, Lee S, Schernhammer ES, Grodstein F. The association of self-reported sleep duration, difficulty sleeping, and snoring with cognitive function in older women. Alzheimer Dis Assoc Disord 2006 Jan–Mar; 20(1): 41–48. https://doi.org/10.1097/01.wad.0000201850.52707.80.Search in Google Scholar

8. Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J. Clin Periodontol 2008 Apr; 35(4): 277–290. https://doi.org/10.1111/j.1600-051X.2007.01173.x.Search in Google Scholar

9. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: A 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol 2002 Aug; 52(2): 168–174. https://doi.org/10.1002/ana.10265.Search in Google Scholar

10. Noble JN, Scarmeas N, Celenti RS, Elkind MSV, Wright CB, Schupf N, Papapanou PN. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS One 2014 Dec 18; 9(12): e114959.Search in Google Scholar

11. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies. Neurology 1996 Aug; 47(2): 425–432. https://doi.org/10.1212/WNL.47.2.425.Search in Google Scholar

12. Strachan MWJ, Reynolds RM, Marioni RE, Price JF. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 2011 Feb; 7(2): 108–114. https://doi.org/10.1038/nrendo.2010.228.Search in Google Scholar

13. Whitmer RA. Type 2 diabetes and risk of cognitive impairment and dementia. Current Neurology and Neuroscience Reports 2007 Sep; 7(5): 373–380. https://doi.org/10.1007/s11910-007-0058-7.Search in Google Scholar

14. LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF et al. Treatment of Diabetes in Older Adults: An Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 2019 May 1; 104(5): 1520–1574. https://doi.org/10.1210/jc.2019-00198.Search in Google Scholar

15. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J. Diabetes Investig 2013 Nov 27; 4(6): 640–450. https://doi.org/10.1111/jdi.12087.Search in Google Scholar

16. Abner EL, EL, Nelson PT, Kryscio RJ, Schmitt FA et al. Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimer’s Dement 2016 Aug; 12(8): 882–889. https://doi.org/10.1016/j.jalz.2015.12.006.Search in Google Scholar

17. Colin LM, Randall B, Kaj B, Christopher CR et al. Alzheimer’s disease. Nat Rev Dis Primers 2015 Oct 15; 1: 15056. https://doi.org/10.1038/nrdp.2015.56.Search in Google Scholar

18. Jason W, Andrew B, Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 2018 Jul 31; 7: F1000 Faculty Rev-1161. https://doi.org/10.12688/f1000research.14506.1. eCollection 2018.Search in Google Scholar

19. Xu W, Yang Y, Yuan G, Zhu W, Ma D, Hu S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J Investig Med 2015; 63(2): 267–272.Search in Google Scholar

20. Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia MA, Coccia R, Butterfield DA, Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med 2016 Feb; 91: 127–142. https://doi.org/10.1016/j.freeradbiomed.2015.12.012.Search in Google Scholar

21. Talbot K1, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012 Apr; 122(4): 1316–1338. https://doi.org/10.1172/JCI59903.Search in Google Scholar

22. Steen E, Terry BM, Rivera E, Cannon JL, Neely TR, Tavares R et al: Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63–80.Search in Google Scholar

23. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM: Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 2006; 9(1): 13–33.Search in Google Scholar

24. Maggi S, Limongi F, Noale M, Romanato G, Tonin P, Rozzini R et al: ILSA Study Group. Diabetes as a risk factor for cognitive decline in older patients. Dement Geriatr Cogn Disord 2009; 27(1): 24–33.Search in Google Scholar

25. Moreira PI. Alzheimer’s disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis 2012; 30 (Suppl 2): S199YS215.Search in Google Scholar

26. Efthalia A, Christina P.DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med 2018 Jun; 6(12): 255. https://doi.org/10.21037/atm.2018.04.41.Search in Google Scholar

27. Michał W, Karol G, Maciej W, Eryk W et al. Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int J Mol Sci 2019 Aug; 20(16): 4052. https://doi.org/10.3390/ijms20164052.Search in Google Scholar

28. Moreira RO, Campos SC, Soldera AL. Type 2 Diabetes Mellitus and Alzheimer’s Disease: from physiopathology to treatment implications. Diabetes Metab Res Rev 2013. https://doi.org/10.1002/dmrr.2442.Search in Google Scholar

29. Duarte AI, Moreira, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 384017–384038.Search in Google Scholar

30. Nehru S Ch, Pindiprolu S SK, Duraiswamy B, Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease. J Drug Target 2018 Sep; 26(8): 670–675. https://doi.org/10.1080/1061186X.2018.1433682. Epub 2018 Mar 2. https://pubmed.ncbi.nlm.nih.gov/29378454/.Search in Google Scholar

31. Michał W, Eryk W, Maciej S, Maciej W et al., Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer’s Disease. Biomed Res Int 2018; 6091014. https://doi.org/10.1155/2018/6091014 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116461/.Search in Google Scholar

32. Ilgin YS, Utku ES, Sevki C. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab Syndr 2018 May; 12(3): 469–475. https://doi.org/10.1016/j.dsx.2018.03.002. Epub 2018 Mar 16.Search in Google Scholar

33. EA Elbassuoni, RF Ahmed, Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson’s with pre-existing diabetes. Neurochem Int 2019 Dec; 131: 104583. https://doi.org/10.1016/j.neuint.2019.104583. Epub 2019 Oct 22.Search in Google Scholar

34. Jose ASL, Hector MG, Gabriel CL. Alzheimer’s disease. Handb Clin Neurol 2019; 167: 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3.Search in Google Scholar

35. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018 Jan; 25(1): 59–70. https://doi.org/10.1111/ene.13439. Epub 2017 Oct 19.Search in Google Scholar

36. Shuko T, Naoyuki S, Hiromi R, Ryuichi M. Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst 2011 Jun; 7(6): 1822–1827. https://doi.org/10.1039/c0mb00302f. Epub 2011 Mar 24.Search in Google Scholar

37. Heller J, Dogan I, Schulz JB, Reetz K. Evidence for gender differences in cognition, emotion and quality of life in Parkinson’s disease? Aging Dis 2013 Oct 22; 5(1): 63–75. https://doi.org/10.14366/AD.2014.050063.Search in Google Scholar

38. Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 2017 Mar 4; 18(3): 551. https://doi.org/10.4103/0028-3886.226451.Search in Google Scholar

39. Zhang ZQ, Hölscher C. GIP has a neuroprotective effect in models of Alzheimer’s and Parkinson’s disease. Peptides November 2020 Mar; 125: 170184. https://doi.org/10.1016/j.peptides.2019.170184.Search in Google Scholar

40. Hölscher C. Novel double GLP-1/GIP receptor agonists show neuroprotective effects in models of Alzheimer’s and Parkinson’s disease. Neuropharmacology January 2018 136(Pt B). https://doi.org/10.1016/j.neurop-harm.2018.01.040.Search in Google Scholar

41. Kupryjaniuk A, Sobstyl M, Pietras T. Jakość życia, deficyty funkcji poznawczych i depresja w chorobie Parkinsona: Quality of life, cognitive deficits, and depression in Parkinson’s disease. Fides et Ratio 2020 December 19; 44(4). https://doi.org/10.34766/fetr.v44i4.434.Search in Google Scholar

42. Rhee SY, Ha K-D, H. Kwon, Park S-E, Park Y-G, Kimet Y-H et al. Association Between Glycemic Status and the Risk of Parkinson Disease: A Nationwide Population-Based Study. Diabetes Care 2020 Sep; 43(9): 2169–2175. https://doi.org/10.2337/dc19-0760.Search in Google Scholar

43. C. Hierro-Bujalance, C. Infante-Garcia, A. Del Marco, M. Herrera, M. J. Carranza-Naval, J. Suarez et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed mouse model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res Ther 2020 Apr 7; 12(1): 40. https://doi.org/10.1186/s13195-020-00607-4.Search in Google Scholar

44. Lima MMS, Targa ADS, Noseda ACD, Rodrigues LS, Delattre AM, dos Santos FV et al. Does Parkinson’s disease and type – 2 diabetes mellitus present common pathophysiological mechanisms and treatments? CNS Neurol Disord Drug Targets 2014 Apr; 13(3): 418–428. https://doi.org/10.2174/18715273113126660155.Search in Google Scholar

45. Bosco D, Plastino M, Cristiano D, Colica C, Ermio C, Bartolo MD et al. Dementia is associated with insulin resistance in patients with Parkinson’s disease. J Neurol Sci 2012 Apr 15; 315(1–2): 39–43. https://doi.org/10.1016/j.jns.2011.12.008. Epub 2012 Jan 21.Search in Google Scholar

46. Normando EM, Davis BM, De Groef L, Nizari S, Turner LA, Ravindran N. Retina as an early biomarker of neurodegeneration in a model of rotenone-induced Parkinson’s disease: evidence of neuroprotective effects of rosiglitazone in the eye and brain. Acta Neuropathologica Communications 2016 August 18. https://doi.org/10.1186/s40478-016-0346-z.Search in Google Scholar

47. Capriotti T, Terzakis K. Parkinson Disease. Home Healthc Now 2016 Jun; 34(6): 300–307. https://doi.org/10.1097/NHH.0000000000000398.Search in Google Scholar

48. Hölscher Ch. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 2018 Jul 1; 136(Pt B): 251–259. https://doi.org/10.1016/j.neuropharm.2018.01.040. Epub 2018 Jan 31.Search in Google Scholar

49. Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH. Glucagon – like peptide – 1 (GLP – 1) receptor agonists in the treatment of Parkinson’s disease. Expert Opin Investig Drugs 2020 Jun; 29(6): 595–602. https://doi.org/10.1080/13543784.2020.1764534.Search in Google Scholar

50. Athauda D, Foltynie T. Protective effects of the GLP – 1 mimetic exendin – 4 in Parkinson’s disease. Neuropharmacology 2018 Jul 1; 136(Pt B): 260– 270. https://doi.org/10.1016/j.neuropharm.2017.09.023.Search in Google Scholar

51. Ashraghi MR, Pagano G, Polychronis S, Niccolini F, Politis M. Parkinson’s Disease, Diabetes and Cognitive Impairment. Recent Pat Endocr Metab Immune Drug Discov 2016; 10(1): 11–21. https://doi.org/10.2174/1872214810999160628105549.Search in Google Scholar

52. Elbassuoni EA, Ahmed RF. Mechanism of the neuroprotective effect of GLP – 1 in a rat model of Parkinson’s with pre-existing diabetes. Neurochem Int 2019 Dec; 131: 104583. https://doi.org/10.1016/j.neuint.2019.104583.Search in Google Scholar

53. Trist BG, Hare DJ, Double KL. Oxidative stress in aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019 Dec; 18(6): e13031. https://doi.org/10.1111/acel.13031.Search in Google Scholar

54. Quintanilla BSR, Correa R. Rosiglitazone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.Search in Google Scholar

55. Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I. Glitazone treatment and Parkinson’s disease in people with diabetes: a retrospective cohort study. PLoS Med 2015 July 21; 12(7): e1001854. https://doi.org/10.1371/journal.pmed.1001854.Search in Google Scholar

56. Walter J, Oyere O, Mayowa O, Sonal S. Stroke: a global response is needed. Bulletin of the World Health Organization 2016 Sep 1; 94(9): 634–634A. https://doi.org/10.2471/BLT.16.181636.Search in Google Scholar

57. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ et al. A randomized trial of intraarterial treatment for acute ischemic stroke. Clinical Trial N Engl J Med 2015 Jan 1; 372(1): 11–20. https://doi.org/10.1056/NEJMoa1411587. Epub 2014 Dec 17.Search in Google Scholar

58. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi NF et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. Randomized Controlled Trial N Engl J Med 2015 Mar 12; 372(11): 1009–1018. https://doi.org/10.1056/NEJMoa1414792. Epub 2015 Feb 11.Search in Google Scholar

59. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. Randomized Controlled Trial N Engl J Med 2015 Mar 12; 372(11): 1019–1030. https://doi.org/10.1056/NEJMoa1414905. Epub 2015 Feb 11.Search in Google Scholar

60. Wiciński M, Socha MJ, Malinowski B, Wódkiewicz E, Walczak M, Górski K et al., Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int J Mol Sci 2019 Mar; 20(5): 1050.Search in Google Scholar

61. Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones (Athens) 2018 Sep; 17(3): 333–350. https://doi.org/10.1007/s42000-018-0038-0. Epub 2018 Jun 12.Search in Google Scholar

62. Baggio L, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007 May; 132(6): 2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054.Search in Google Scholar

63. Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 2012 Mar 23; 13: 33. https://doi.org/10.1186/1471-2202-13-33.Search in Google Scholar

64. Stephens JW. The incretin system in the management of type 2 diabetes mellitus. Clin Med (Lond) 2010 Oct; 10(5): 491–495. https://doi.org/10.7861/clinmedicine.10-5-491.Search in Google Scholar

65. Rejdak K, Słowik A. Patogeneza udaru niedokrwiennego mózgu – możliwości neuroprotekcji i stymulowania plastyczności mózgu. Polski Przegląd Neurologiczny 2018; 14(4): 230–239.Search in Google Scholar

66. Sato K, Kameda M, Yasuhara T et al. Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci 2013; 14(11): 21513–21524. Published 2013 Oct 30. https://doi.org/10.3390/ijms141121513.Search in Google Scholar

67. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016 Jul 28; 375(4): 311–322. https://doi.org/10.1056/NEJMoa1603827. Epub 2016 Jun 13.Search in Google Scholar

68. Zhu H, Zhang Y, Shi Z, Lu D, Li T, Ding Y, Ruan Y, Xu A. The neuroprotection of liraglutide against ischaemia – induced apoptosis through the activation of the PI3K/AKT and MAPK pathways. Sci Rep 2016; 6: 26859. https://doi.org/10.1038/srep26859.Search in Google Scholar

69. Briyal S, Shah S, Gulati A. Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 2014; 281: 269–281. https://doi.org/10.1016/j.neuroscience.2014.09.064.Search in Google Scholar

70. Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods Mol Biol 2012; 887: 841–847. https://doi.org/10.1007/978-1-61779-860-3_5.Search in Google Scholar

71. Kuroki T, Tanaka R, Shimada Y, Yamashiro K, Ueno Y, Shimura H. Exendin-4 Inhibits Matrix Metalloproteinase – 9 Activation and Reduces Infarct Growth After Focal Cerebral Ischemia in Hyperglycemic Mice. Stroke 2016 May; 47(5): 1328–1335. https://doi.org/10.1161/STROKEAHA.116.012934. Epub 2016 Mar 15.Search in Google Scholar

72. J. Jin , H. Kang, J. Jung, J. Jeong, C. Park Related expressional change of HIF – 1α to the neuroprotective activity of exendin – 4 in transient global ischemia. Neuroreport 2014 Jan 8; 25(1): 65–70. https://doi.org/10.1097/WNR.0000000000000046.Search in Google Scholar

73. Jiang Q, Geng X, Warren J, E. Eugene Paul Cosky , S. Kaura , C.Stone et al. Hypoxia Inducible Factor – 1α (HIF – 1α) Mediates NLRP3 Inflammasome – Dependent – Pyroptotic and Apoptotic Cell Death Following Ischemic Stroke Neuroscience 2020 Nov 10; 448: 126–139. https://doi.org/10.1016/j.neuroscience.2020.09.036. Epub 2020 Sep 22.Search in Google Scholar

74. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nyström T et al. Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization PLoS One 2014 Aug 7; 9(8): e103114. https://doi.org/10.1371/journal.pone.0103114. eCollection 2014.Search in Google Scholar

75. Basalay MV, Davidson SM, Yellon DM. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP – 1 Analogues – Liraglutide and Semaglutide, Cardiovasc Drugs Ther 2019; 33(6): 661–667. https://doi.org/10.1007/s10557-019-06915-8.Search in Google Scholar

76. Memezawa H, Smith ML, Siesjö BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 1992 Apr; 23(4): 552–559. https://doi.org/10.1161/01.str.23.4.552.Search in Google Scholar

77. Powers WJ, Rabinstein AA, Ackerson T et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018; 49: e46–110. https://doi.org/10.1161/STR.0000000000000158.Search in Google Scholar